{"title":"毛特纳群的 C^*$$ 代数","authors":"Hedi Regeiba, Jean Ludwig","doi":"10.1007/s43036-024-00348-3","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span>\\(M_\\theta =({\\mathbb {R}} < imes {\\mathbb {C}}^2, \\underset{\\theta }{\\cdot }) \\ (\\theta \\)</span> an irrational number), be the Mautner group. We describe the <span>\\(C^*\\)</span>-algebra of <span>\\(M_\\theta \\)</span> as a subalgebra of <span>\\(C_0({\\mathbb {C}}^2,{\\mathcal {B}}(L^{2}({\\mathbb {R}}))) \\)</span></p></div>","PeriodicalId":44371,"journal":{"name":"Advances in Operator Theory","volume":"9 3","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s43036-024-00348-3.pdf","citationCount":"0","resultStr":"{\"title\":\"The \\\\(C^*\\\\)-algebra of the Mautner group\",\"authors\":\"Hedi Regeiba, Jean Ludwig\",\"doi\":\"10.1007/s43036-024-00348-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <span>\\\\(M_\\\\theta =({\\\\mathbb {R}} < imes {\\\\mathbb {C}}^2, \\\\underset{\\\\theta }{\\\\cdot }) \\\\ (\\\\theta \\\\)</span> an irrational number), be the Mautner group. We describe the <span>\\\\(C^*\\\\)</span>-algebra of <span>\\\\(M_\\\\theta \\\\)</span> as a subalgebra of <span>\\\\(C_0({\\\\mathbb {C}}^2,{\\\\mathcal {B}}(L^{2}({\\\\mathbb {R}}))) \\\\)</span></p></div>\",\"PeriodicalId\":44371,\"journal\":{\"name\":\"Advances in Operator Theory\",\"volume\":\"9 3\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s43036-024-00348-3.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Operator Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s43036-024-00348-3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Operator Theory","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s43036-024-00348-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Let \(M_\theta =({\mathbb {R}} < imes {\mathbb {C}}^2, \underset{\theta }{\cdot }) \ (\theta \) an irrational number), be the Mautner group. We describe the \(C^*\)-algebra of \(M_\theta \) as a subalgebra of \(C_0({\mathbb {C}}^2,{\mathcal {B}}(L^{2}({\mathbb {R}}))) \)