{"title":"利用天然生物活性化合物对神经退行性疾病进行分子对接和 MD 模拟组合研究,揭示 N-甲基-D-天冬氨酸(NMDA)受体的新奥秘","authors":"Ayushi Poddar, Anupriya, Priyangulta Beck, Harsimran Kaur Hora, Nisha Rani Soreng, Swati Shalika, Mukesh Nitin","doi":"10.55544/jrasb.3.2.34","DOIUrl":null,"url":null,"abstract":"Neurodegenerative diseases pose a significant challenge, and novel therapeutic strategies are urgently needed. N-methyl-D-aspartate (NMDA) receptor is reported to play a critical role in the central nervous system and has emerged as a potential target for drug discovery. This study explored the potential scope of natural bioactive compounds as ligands for the NMDA receptor using current advances of docking studies with molecular dynamic (MD) simulations. An extensive virtual screening of 500 natural compounds were executed based on wide scientific literature and bibliography search. Docking simulations identified promising candidates with favorable binding affinities, with the top compounds - DL-Alanosine, and Zeinoxanthin (PubChem CIDs 153353 and 5281234) exhibiting exceptionally high docking scores of -6.6 and -6.4, against NMDA respectively. Further, MD simulations suggested the stability of the top-scoring compounds in complex with the NMDA receptor. These findings will provide a new insights to researchers and scientists on proceeding with new alternatives on the investigation of natural bioactive compounds as therapeutic lead candidates for targeting various receptors like NMDA in neurodegenerative diseases. However, in vitro and in vivo studies are warranted to validate these results and elucidate the underlying mechanisms of action.","PeriodicalId":507877,"journal":{"name":"Journal for Research in Applied Sciences and Biotechnology","volume":"33 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New Insights on N-Methyl-D-Aspartate (NMDA) Receptor Under Combinatorial Molecular Docking and MD Simulation Studies Using Natural Bioactive Compounds Against Neurodegenerative Diseases\",\"authors\":\"Ayushi Poddar, Anupriya, Priyangulta Beck, Harsimran Kaur Hora, Nisha Rani Soreng, Swati Shalika, Mukesh Nitin\",\"doi\":\"10.55544/jrasb.3.2.34\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Neurodegenerative diseases pose a significant challenge, and novel therapeutic strategies are urgently needed. N-methyl-D-aspartate (NMDA) receptor is reported to play a critical role in the central nervous system and has emerged as a potential target for drug discovery. This study explored the potential scope of natural bioactive compounds as ligands for the NMDA receptor using current advances of docking studies with molecular dynamic (MD) simulations. An extensive virtual screening of 500 natural compounds were executed based on wide scientific literature and bibliography search. Docking simulations identified promising candidates with favorable binding affinities, with the top compounds - DL-Alanosine, and Zeinoxanthin (PubChem CIDs 153353 and 5281234) exhibiting exceptionally high docking scores of -6.6 and -6.4, against NMDA respectively. Further, MD simulations suggested the stability of the top-scoring compounds in complex with the NMDA receptor. These findings will provide a new insights to researchers and scientists on proceeding with new alternatives on the investigation of natural bioactive compounds as therapeutic lead candidates for targeting various receptors like NMDA in neurodegenerative diseases. However, in vitro and in vivo studies are warranted to validate these results and elucidate the underlying mechanisms of action.\",\"PeriodicalId\":507877,\"journal\":{\"name\":\"Journal for Research in Applied Sciences and Biotechnology\",\"volume\":\"33 3\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal for Research in Applied Sciences and Biotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.55544/jrasb.3.2.34\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal for Research in Applied Sciences and Biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.55544/jrasb.3.2.34","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
New Insights on N-Methyl-D-Aspartate (NMDA) Receptor Under Combinatorial Molecular Docking and MD Simulation Studies Using Natural Bioactive Compounds Against Neurodegenerative Diseases
Neurodegenerative diseases pose a significant challenge, and novel therapeutic strategies are urgently needed. N-methyl-D-aspartate (NMDA) receptor is reported to play a critical role in the central nervous system and has emerged as a potential target for drug discovery. This study explored the potential scope of natural bioactive compounds as ligands for the NMDA receptor using current advances of docking studies with molecular dynamic (MD) simulations. An extensive virtual screening of 500 natural compounds were executed based on wide scientific literature and bibliography search. Docking simulations identified promising candidates with favorable binding affinities, with the top compounds - DL-Alanosine, and Zeinoxanthin (PubChem CIDs 153353 and 5281234) exhibiting exceptionally high docking scores of -6.6 and -6.4, against NMDA respectively. Further, MD simulations suggested the stability of the top-scoring compounds in complex with the NMDA receptor. These findings will provide a new insights to researchers and scientists on proceeding with new alternatives on the investigation of natural bioactive compounds as therapeutic lead candidates for targeting various receptors like NMDA in neurodegenerative diseases. However, in vitro and in vivo studies are warranted to validate these results and elucidate the underlying mechanisms of action.