{"title":"受高斯白噪声影响的双稳态振荡器中的同链分岔和混沌动力学","authors":"Lele Jia, Shuangbao Li, Liying Kou, Kongran Wu","doi":"10.1142/s0218127424500779","DOIUrl":null,"url":null,"abstract":"This paper studies the effect of Gaussian white noise on homoclinic bifurcations and chaotic dynamics of a bistable, vibro-impact Smooth-and-Discontinuous (SD) oscillator. First, the SD oscillator is reproduced and generalized by installing a slider on a fixed rod, so the slider is connected by a pair of linear springs initially pre-compressed in the vertical direction to achieve bistable vibration characteristics, and two screw nuts are installed on the rod as two adjustable bilateral rigid constraints to generate the vibro-impact. A discontinuous dynamical equation with a map defined on switching boundaries to represent velocity loss during each collision is derived to describe the vibration pattern of the bistable, vibro-impact SD oscillator through studying the persistence of the unique, unperturbed, nonsmooth, homoclinic structure. Second, the general framework of random Melnikov process for a class of bistable, vibro-impact systems contaminated with Gaussian white noise is derived and employed through the corresponding Melnikov function to obtain the necessary parameter thresholds for homoclinic tangency and possible chaos of the bistable, vibro-impact SD oscillator. Third, the effectiveness of a semi-analytical prediction by the Melnikov function is verified using the largest Lyapunov exponent, bifurcation series, and 0–1 test. Finally, the sensitivity to the initial values of chaos is verified by the fractal attractor basins, and the influence of the Gaussian white noise on periodic and chaotic structures is studied through Poincaré mapping to show the rich dynamical geometric structures.","PeriodicalId":50337,"journal":{"name":"International Journal of Bifurcation and Chaos","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Homoclinic Bifurcations and Chaotic Dynamics in a Bistable Vibro-Impact SD Oscillator Subject to Gaussian White Noise\",\"authors\":\"Lele Jia, Shuangbao Li, Liying Kou, Kongran Wu\",\"doi\":\"10.1142/s0218127424500779\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper studies the effect of Gaussian white noise on homoclinic bifurcations and chaotic dynamics of a bistable, vibro-impact Smooth-and-Discontinuous (SD) oscillator. First, the SD oscillator is reproduced and generalized by installing a slider on a fixed rod, so the slider is connected by a pair of linear springs initially pre-compressed in the vertical direction to achieve bistable vibration characteristics, and two screw nuts are installed on the rod as two adjustable bilateral rigid constraints to generate the vibro-impact. A discontinuous dynamical equation with a map defined on switching boundaries to represent velocity loss during each collision is derived to describe the vibration pattern of the bistable, vibro-impact SD oscillator through studying the persistence of the unique, unperturbed, nonsmooth, homoclinic structure. Second, the general framework of random Melnikov process for a class of bistable, vibro-impact systems contaminated with Gaussian white noise is derived and employed through the corresponding Melnikov function to obtain the necessary parameter thresholds for homoclinic tangency and possible chaos of the bistable, vibro-impact SD oscillator. Third, the effectiveness of a semi-analytical prediction by the Melnikov function is verified using the largest Lyapunov exponent, bifurcation series, and 0–1 test. Finally, the sensitivity to the initial values of chaos is verified by the fractal attractor basins, and the influence of the Gaussian white noise on periodic and chaotic structures is studied through Poincaré mapping to show the rich dynamical geometric structures.\",\"PeriodicalId\":50337,\"journal\":{\"name\":\"International Journal of Bifurcation and Chaos\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Bifurcation and Chaos\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s0218127424500779\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Bifurcation and Chaos","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0218127424500779","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Homoclinic Bifurcations and Chaotic Dynamics in a Bistable Vibro-Impact SD Oscillator Subject to Gaussian White Noise
This paper studies the effect of Gaussian white noise on homoclinic bifurcations and chaotic dynamics of a bistable, vibro-impact Smooth-and-Discontinuous (SD) oscillator. First, the SD oscillator is reproduced and generalized by installing a slider on a fixed rod, so the slider is connected by a pair of linear springs initially pre-compressed in the vertical direction to achieve bistable vibration characteristics, and two screw nuts are installed on the rod as two adjustable bilateral rigid constraints to generate the vibro-impact. A discontinuous dynamical equation with a map defined on switching boundaries to represent velocity loss during each collision is derived to describe the vibration pattern of the bistable, vibro-impact SD oscillator through studying the persistence of the unique, unperturbed, nonsmooth, homoclinic structure. Second, the general framework of random Melnikov process for a class of bistable, vibro-impact systems contaminated with Gaussian white noise is derived and employed through the corresponding Melnikov function to obtain the necessary parameter thresholds for homoclinic tangency and possible chaos of the bistable, vibro-impact SD oscillator. Third, the effectiveness of a semi-analytical prediction by the Melnikov function is verified using the largest Lyapunov exponent, bifurcation series, and 0–1 test. Finally, the sensitivity to the initial values of chaos is verified by the fractal attractor basins, and the influence of the Gaussian white noise on periodic and chaotic structures is studied through Poincaré mapping to show the rich dynamical geometric structures.
期刊介绍:
The International Journal of Bifurcation and Chaos is widely regarded as a leading journal in the exciting fields of chaos theory and nonlinear science. Represented by an international editorial board comprising top researchers from a wide variety of disciplines, it is setting high standards in scientific and production quality. The journal has been reputedly acclaimed by the scientific community around the world, and has featured many important papers by leading researchers from various areas of applied sciences and engineering.
The discipline of chaos theory has created a universal paradigm, a scientific parlance, and a mathematical tool for grappling with complex dynamical phenomena. In every field of applied sciences (astronomy, atmospheric sciences, biology, chemistry, economics, geophysics, life and medical sciences, physics, social sciences, ecology, etc.) and engineering (aerospace, chemical, electronic, civil, computer, information, mechanical, software, telecommunication, etc.), the local and global manifestations of chaos and bifurcation have burst forth in an unprecedented universality, linking scientists heretofore unfamiliar with one another''s fields, and offering an opportunity to reshape our grasp of reality.