{"title":"基于静态和运动学 GNSS 解决方案的 2021 年 1 月 14 日 Mw 6.2 马木朱-马杰内地震共震滑移模型","authors":"Oktadi Prayoga, Cecep Pratama","doi":"10.1515/jag-2023-0041","DOIUrl":null,"url":null,"abstract":"\n The Mw 6.2 Mamuju-Majene earthquake occurred on 14 January 2021, with the epicenter at 118.890°E, 2.972°S. The shaking caused severe damage in West Sulawesi, especially in the Mamuju and Majene cities. Most of the coseismic slip distribution of the Mamuju-Majene Earthquake is derived from the daily solutions, which might include early postseismic deformation. Therefore, we conducted a coseismic slip model using kinematic solution based on Global Navigation Satellite System (GNSS) to determine the best coseismic slip values and model distribution. Our analysis indicates that the coseismic displacement from the kinematic solution is higher than the static solution. The GNSS data was utilized for inversion analysis, considering two potential fault sources, they are the Makassar Strait Central Fault and the Mamuju Fault. We found a larger misfit between the observed data and the model generated on static and kinematic solutions along the Makassar Strait Central Fault. Based on the kinematic solution, the coseismic slip distribution represents that fault rupture spreading along a north-south orientation, while the static solution is centered in the northern part. The maximum coseismic slip from each kinematic and static solution is 0.29 m and 0.11 m, respectively. Meanwhile, the seismic moment generated from the kinematic solution is 1.5 × 1026 N m (equivalent to Mw 6.75), which is greater than the static solution of 2.4 × 1025 N m (equivalent to Mw 6.22).","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":"77 13","pages":""},"PeriodicalIF":16.4000,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Coseismic slip model of the 14 January 2021 Mw 6.2 Mamuju-Majene earthquake based on static and kinematic GNSS solution\",\"authors\":\"Oktadi Prayoga, Cecep Pratama\",\"doi\":\"10.1515/jag-2023-0041\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The Mw 6.2 Mamuju-Majene earthquake occurred on 14 January 2021, with the epicenter at 118.890°E, 2.972°S. The shaking caused severe damage in West Sulawesi, especially in the Mamuju and Majene cities. Most of the coseismic slip distribution of the Mamuju-Majene Earthquake is derived from the daily solutions, which might include early postseismic deformation. Therefore, we conducted a coseismic slip model using kinematic solution based on Global Navigation Satellite System (GNSS) to determine the best coseismic slip values and model distribution. Our analysis indicates that the coseismic displacement from the kinematic solution is higher than the static solution. The GNSS data was utilized for inversion analysis, considering two potential fault sources, they are the Makassar Strait Central Fault and the Mamuju Fault. We found a larger misfit between the observed data and the model generated on static and kinematic solutions along the Makassar Strait Central Fault. Based on the kinematic solution, the coseismic slip distribution represents that fault rupture spreading along a north-south orientation, while the static solution is centered in the northern part. The maximum coseismic slip from each kinematic and static solution is 0.29 m and 0.11 m, respectively. Meanwhile, the seismic moment generated from the kinematic solution is 1.5 × 1026 N m (equivalent to Mw 6.75), which is greater than the static solution of 2.4 × 1025 N m (equivalent to Mw 6.22).\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":\"77 13\",\"pages\":\"\"},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/jag-2023-0041\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jag-2023-0041","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Coseismic slip model of the 14 January 2021 Mw 6.2 Mamuju-Majene earthquake based on static and kinematic GNSS solution
The Mw 6.2 Mamuju-Majene earthquake occurred on 14 January 2021, with the epicenter at 118.890°E, 2.972°S. The shaking caused severe damage in West Sulawesi, especially in the Mamuju and Majene cities. Most of the coseismic slip distribution of the Mamuju-Majene Earthquake is derived from the daily solutions, which might include early postseismic deformation. Therefore, we conducted a coseismic slip model using kinematic solution based on Global Navigation Satellite System (GNSS) to determine the best coseismic slip values and model distribution. Our analysis indicates that the coseismic displacement from the kinematic solution is higher than the static solution. The GNSS data was utilized for inversion analysis, considering two potential fault sources, they are the Makassar Strait Central Fault and the Mamuju Fault. We found a larger misfit between the observed data and the model generated on static and kinematic solutions along the Makassar Strait Central Fault. Based on the kinematic solution, the coseismic slip distribution represents that fault rupture spreading along a north-south orientation, while the static solution is centered in the northern part. The maximum coseismic slip from each kinematic and static solution is 0.29 m and 0.11 m, respectively. Meanwhile, the seismic moment generated from the kinematic solution is 1.5 × 1026 N m (equivalent to Mw 6.75), which is greater than the static solution of 2.4 × 1025 N m (equivalent to Mw 6.22).
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.