{"title":"具有贝丁顿-德安吉利斯功能反应和恐惧效应的双物种同化模型的全局动力学特征","authors":"Qun Zhu, Fengde Chen, Zhong Li, Lijuan Chen","doi":"10.1142/s0218127424500755","DOIUrl":null,"url":null,"abstract":"This paper investigates a two-species amensalism model that includes the fear effect on the first species and the Beddington–DeAngelis functional response. The existence and stability of possible equilibria are investigated. Under different parameters, there exist two stable equilibria which means that this model is not always globally asymptotically stable. Together with the existence of all possible equilibria and their stability, saddle connection and close orbits, we derive some conditions for transcritical bifurcation and saddle-node bifurcation. Furthermore, global dynamics analysis of the model is performed. It is observed that under certain parameter conditions, when the intensity of the fear effect is below a certain threshold value, as the fear effect increases it will only reduce the density of the first species population and will have no influence the extinction or existence of the first species population. However, when the fear effect exceeds this threshold, the increase of the fear effect will accelerate the extinction of the first species population. Finally, numerical simulations are performed to validate theoretical results.","PeriodicalId":50337,"journal":{"name":"International Journal of Bifurcation and Chaos","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Global Dynamics of Two-Species Amensalism Model with Beddington–DeAngelis Functional Response and Fear Effect\",\"authors\":\"Qun Zhu, Fengde Chen, Zhong Li, Lijuan Chen\",\"doi\":\"10.1142/s0218127424500755\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper investigates a two-species amensalism model that includes the fear effect on the first species and the Beddington–DeAngelis functional response. The existence and stability of possible equilibria are investigated. Under different parameters, there exist two stable equilibria which means that this model is not always globally asymptotically stable. Together with the existence of all possible equilibria and their stability, saddle connection and close orbits, we derive some conditions for transcritical bifurcation and saddle-node bifurcation. Furthermore, global dynamics analysis of the model is performed. It is observed that under certain parameter conditions, when the intensity of the fear effect is below a certain threshold value, as the fear effect increases it will only reduce the density of the first species population and will have no influence the extinction or existence of the first species population. However, when the fear effect exceeds this threshold, the increase of the fear effect will accelerate the extinction of the first species population. Finally, numerical simulations are performed to validate theoretical results.\",\"PeriodicalId\":50337,\"journal\":{\"name\":\"International Journal of Bifurcation and Chaos\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Bifurcation and Chaos\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s0218127424500755\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Bifurcation and Chaos","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0218127424500755","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Global Dynamics of Two-Species Amensalism Model with Beddington–DeAngelis Functional Response and Fear Effect
This paper investigates a two-species amensalism model that includes the fear effect on the first species and the Beddington–DeAngelis functional response. The existence and stability of possible equilibria are investigated. Under different parameters, there exist two stable equilibria which means that this model is not always globally asymptotically stable. Together with the existence of all possible equilibria and their stability, saddle connection and close orbits, we derive some conditions for transcritical bifurcation and saddle-node bifurcation. Furthermore, global dynamics analysis of the model is performed. It is observed that under certain parameter conditions, when the intensity of the fear effect is below a certain threshold value, as the fear effect increases it will only reduce the density of the first species population and will have no influence the extinction or existence of the first species population. However, when the fear effect exceeds this threshold, the increase of the fear effect will accelerate the extinction of the first species population. Finally, numerical simulations are performed to validate theoretical results.
期刊介绍:
The International Journal of Bifurcation and Chaos is widely regarded as a leading journal in the exciting fields of chaos theory and nonlinear science. Represented by an international editorial board comprising top researchers from a wide variety of disciplines, it is setting high standards in scientific and production quality. The journal has been reputedly acclaimed by the scientific community around the world, and has featured many important papers by leading researchers from various areas of applied sciences and engineering.
The discipline of chaos theory has created a universal paradigm, a scientific parlance, and a mathematical tool for grappling with complex dynamical phenomena. In every field of applied sciences (astronomy, atmospheric sciences, biology, chemistry, economics, geophysics, life and medical sciences, physics, social sciences, ecology, etc.) and engineering (aerospace, chemical, electronic, civil, computer, information, mechanical, software, telecommunication, etc.), the local and global manifestations of chaos and bifurcation have burst forth in an unprecedented universality, linking scientists heretofore unfamiliar with one another''s fields, and offering an opportunity to reshape our grasp of reality.