{"title":"基于复杂网络的计算机病毒 SLBRS 模型的动力学和控制策略","authors":"Wei Tang, Hui Yang, Jinxiu Pi","doi":"10.1155/2024/3943882","DOIUrl":null,"url":null,"abstract":"<p>The proliferation of computer viruses has escalated in recent years, posing threats not only to individuals’ safety and property but also to societal well-being. Consequently, effectively curtailing virus spread has become an urgent imperative. To address this issue, our paper introduces a new virus propagation model and associated control strategy. First, diverging from conventional approaches in network virus literature, we propose a susceptible-latent-breaking-out-recovered-susceptible (SLBRS) virus propagation model tailored to the topological characteristics of scale-free networks, thus comprehensively incorporating network structure’s impact on virus propagation. Second, we analyze the model’s foundational properties, derive the basic reproduction number, and demonstrate the existence and global asymptotic stability of disease-free equilibrium. Finally, leveraging global stability of the model at the disease-free equilibrium, we integrate the target immunization strategy (TIS) and the acquaintance immunization strategy (AIS) to devise an optimal control strategy. The paper’s findings offer fresh insights into disease-free equilibrium existence and stability, furnishing a more dependable approach to curbing network virus dissemination. The simulation results demonstrate the persistent presence of network viruses in the absence of control measures and the instability of the disease-free equilibrium. However, effective control is achieved after implementing immunization measures.</p>","PeriodicalId":14089,"journal":{"name":"International Journal of Intelligent Systems","volume":"2024 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamics and Control Strategies for SLBRS Model of Computer Viruses Based on Complex Networks\",\"authors\":\"Wei Tang, Hui Yang, Jinxiu Pi\",\"doi\":\"10.1155/2024/3943882\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The proliferation of computer viruses has escalated in recent years, posing threats not only to individuals’ safety and property but also to societal well-being. Consequently, effectively curtailing virus spread has become an urgent imperative. To address this issue, our paper introduces a new virus propagation model and associated control strategy. First, diverging from conventional approaches in network virus literature, we propose a susceptible-latent-breaking-out-recovered-susceptible (SLBRS) virus propagation model tailored to the topological characteristics of scale-free networks, thus comprehensively incorporating network structure’s impact on virus propagation. Second, we analyze the model’s foundational properties, derive the basic reproduction number, and demonstrate the existence and global asymptotic stability of disease-free equilibrium. Finally, leveraging global stability of the model at the disease-free equilibrium, we integrate the target immunization strategy (TIS) and the acquaintance immunization strategy (AIS) to devise an optimal control strategy. The paper’s findings offer fresh insights into disease-free equilibrium existence and stability, furnishing a more dependable approach to curbing network virus dissemination. The simulation results demonstrate the persistent presence of network viruses in the absence of control measures and the instability of the disease-free equilibrium. However, effective control is achieved after implementing immunization measures.</p>\",\"PeriodicalId\":14089,\"journal\":{\"name\":\"International Journal of Intelligent Systems\",\"volume\":\"2024 1\",\"pages\":\"\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Intelligent Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1155/2024/3943882\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Intelligent Systems","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/2024/3943882","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Dynamics and Control Strategies for SLBRS Model of Computer Viruses Based on Complex Networks
The proliferation of computer viruses has escalated in recent years, posing threats not only to individuals’ safety and property but also to societal well-being. Consequently, effectively curtailing virus spread has become an urgent imperative. To address this issue, our paper introduces a new virus propagation model and associated control strategy. First, diverging from conventional approaches in network virus literature, we propose a susceptible-latent-breaking-out-recovered-susceptible (SLBRS) virus propagation model tailored to the topological characteristics of scale-free networks, thus comprehensively incorporating network structure’s impact on virus propagation. Second, we analyze the model’s foundational properties, derive the basic reproduction number, and demonstrate the existence and global asymptotic stability of disease-free equilibrium. Finally, leveraging global stability of the model at the disease-free equilibrium, we integrate the target immunization strategy (TIS) and the acquaintance immunization strategy (AIS) to devise an optimal control strategy. The paper’s findings offer fresh insights into disease-free equilibrium existence and stability, furnishing a more dependable approach to curbing network virus dissemination. The simulation results demonstrate the persistent presence of network viruses in the absence of control measures and the instability of the disease-free equilibrium. However, effective control is achieved after implementing immunization measures.
期刊介绍:
The International Journal of Intelligent Systems serves as a forum for individuals interested in tapping into the vast theories based on intelligent systems construction. With its peer-reviewed format, the journal explores several fascinating editorials written by today''s experts in the field. Because new developments are being introduced each day, there''s much to be learned — examination, analysis creation, information retrieval, man–computer interactions, and more. The International Journal of Intelligent Systems uses charts and illustrations to demonstrate these ground-breaking issues, and encourages readers to share their thoughts and experiences.