Fei Yu, Si Xu, Yue Lin, Yumba Musoya Gracia, Wei Yao, Shuo Cai
{"title":"离散 Memristor 耦合神经网络的动态分析、图像加密应用和 FPGA 实现","authors":"Fei Yu, Si Xu, Yue Lin, Yumba Musoya Gracia, Wei Yao, Shuo Cai","doi":"10.1142/s0218127424500688","DOIUrl":null,"url":null,"abstract":"This paper presents a novel discrete memristor model that incorporates exponential and absolute value functions. A discrete coupled memristor neural network model is constructed based on this memristor design. The periodic and chaotic regions of the discrete neural network model are determined using bifurcation and Lyapunov exponent spectrum. Furthermore, by varying the initial values of the discrete memristive neural network, we observe the coexistence of chaos and periodic attractors, as well as periodic attractors. Additionally, an application to color image encryption based on the discrete system model is given. Security analysis is conducted in the aspects of key space, histogram analysis, correlation analysis, sensitivity analysis, Peak Signal-to-Noise Ratio (PSNR), and information entropy analysis. The analysis results show that the algorithm has a key space size of [Formula: see text], and the information entropy of baboon graph is 7.9993, which is very close to the ideal value of 8. It shows that the image encryption algorithm is feasible and effective. Finally, the implementation of the discrete memristive neural network model is realized using Field Programmable Gate Array (FPGA). The experimental implementation is conducted using the Verilog language on the Vivado 2018.3 platform, and the obtained results align with the numerical simulation results obtained through MATLAB.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":"111 21","pages":""},"PeriodicalIF":16.4000,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamic Analysis, Image Encryption Application and FPGA Implementation of a Discrete Memristor-Coupled Neural Network\",\"authors\":\"Fei Yu, Si Xu, Yue Lin, Yumba Musoya Gracia, Wei Yao, Shuo Cai\",\"doi\":\"10.1142/s0218127424500688\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a novel discrete memristor model that incorporates exponential and absolute value functions. A discrete coupled memristor neural network model is constructed based on this memristor design. The periodic and chaotic regions of the discrete neural network model are determined using bifurcation and Lyapunov exponent spectrum. Furthermore, by varying the initial values of the discrete memristive neural network, we observe the coexistence of chaos and periodic attractors, as well as periodic attractors. Additionally, an application to color image encryption based on the discrete system model is given. Security analysis is conducted in the aspects of key space, histogram analysis, correlation analysis, sensitivity analysis, Peak Signal-to-Noise Ratio (PSNR), and information entropy analysis. The analysis results show that the algorithm has a key space size of [Formula: see text], and the information entropy of baboon graph is 7.9993, which is very close to the ideal value of 8. It shows that the image encryption algorithm is feasible and effective. Finally, the implementation of the discrete memristive neural network model is realized using Field Programmable Gate Array (FPGA). The experimental implementation is conducted using the Verilog language on the Vivado 2018.3 platform, and the obtained results align with the numerical simulation results obtained through MATLAB.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":\"111 21\",\"pages\":\"\"},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s0218127424500688\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0218127424500688","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Dynamic Analysis, Image Encryption Application and FPGA Implementation of a Discrete Memristor-Coupled Neural Network
This paper presents a novel discrete memristor model that incorporates exponential and absolute value functions. A discrete coupled memristor neural network model is constructed based on this memristor design. The periodic and chaotic regions of the discrete neural network model are determined using bifurcation and Lyapunov exponent spectrum. Furthermore, by varying the initial values of the discrete memristive neural network, we observe the coexistence of chaos and periodic attractors, as well as periodic attractors. Additionally, an application to color image encryption based on the discrete system model is given. Security analysis is conducted in the aspects of key space, histogram analysis, correlation analysis, sensitivity analysis, Peak Signal-to-Noise Ratio (PSNR), and information entropy analysis. The analysis results show that the algorithm has a key space size of [Formula: see text], and the information entropy of baboon graph is 7.9993, which is very close to the ideal value of 8. It shows that the image encryption algorithm is feasible and effective. Finally, the implementation of the discrete memristive neural network model is realized using Field Programmable Gate Array (FPGA). The experimental implementation is conducted using the Verilog language on the Vivado 2018.3 platform, and the obtained results align with the numerical simulation results obtained through MATLAB.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.