Jie Shen, Jingen Dai, Kai Yang, Lingling Zhao, Wencang Zhang, Nadia Malaspina's, Pietro Sternai's
{"title":"萨嘎蛇绿混杂岩中变质鳎目岩和蛇绿混杂岩的共时形成和掘起:对新特提斯俯冲起始的见解","authors":"Jie Shen, Jingen Dai, Kai Yang, Lingling Zhao, Wencang Zhang, Nadia Malaspina's, Pietro Sternai's","doi":"10.1111/jmg.12776","DOIUrl":null,"url":null,"abstract":"<p>Subduction initiation is recorded by upper plate magmatism and lower plate metamorphism, that is, supra-subduction zone (SSZ) ophiolite–metamorphic sole pair. Here, we report geochemical and geochronological data as well as P–T calculations of amphibolites (metamorphic sole) and hornblende gabbros (SSZ ophiolite) from the Saga ophiolitic mélange in Tibetan Plateau. Amphibolites show trace element contents compatible with normal-mid-ocean ridge basalt (N-MORB), indicating that the protolith of amphibolite formed in a MOR setting. Instead, hornblende gabbros show significant high field strength elements (HFSEs) negative anomalies, enriched large ion lithophile elements (LILEs) and high zircon ε<sub>Hf</sub>(t) values, suggesting they formed by fluid-induced partial melting of a depleted mantle. Thermobarometry and phase equilibrium modelling suggest two stages of metamorphism for garnet–clinopyroxene amphibolites: (I) a peak metamorphic stage (~1.9 GPa and 1000°C) and (II) a retrograde metamorphic stage (1.1–1.6 GPa and 800–1000°C). Zircon U–Pb ages of amphibolite and hornblende gabbro are 128.8 ± 5.1 Ma and 128.1 ± 1.5 Ma, respectively, suggesting subduction initiation within the eastern Neo-Tethys occurred no later than 128 Ma and SSZ ophiolite formed at ~128 Ma. Apatite U–Pb ages of amphibolite and hornblende gabbro are 121.8 ± 2.1 Ma and 117.5 ± 4.5 Ma, respectively. Titanite U–Pb age of amphibolite is 122.2 ± 1.5 Ma. Overall, our data suggest that the metamorphic sole and SSZ ophiolite were exhumed since 128–118 Ma, and finally exhumed into the ophiolitic mélange.</p>","PeriodicalId":16472,"journal":{"name":"Journal of Metamorphic Geology","volume":"42 6","pages":"843-865"},"PeriodicalIF":3.5000,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Coeval formation and exhumation of metamorphic sole and ophiolite in the Saga ophiolitic mélange: Insights into subduction initiation of the Neo-Tethys\",\"authors\":\"Jie Shen, Jingen Dai, Kai Yang, Lingling Zhao, Wencang Zhang, Nadia Malaspina's, Pietro Sternai's\",\"doi\":\"10.1111/jmg.12776\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Subduction initiation is recorded by upper plate magmatism and lower plate metamorphism, that is, supra-subduction zone (SSZ) ophiolite–metamorphic sole pair. Here, we report geochemical and geochronological data as well as P–T calculations of amphibolites (metamorphic sole) and hornblende gabbros (SSZ ophiolite) from the Saga ophiolitic mélange in Tibetan Plateau. Amphibolites show trace element contents compatible with normal-mid-ocean ridge basalt (N-MORB), indicating that the protolith of amphibolite formed in a MOR setting. Instead, hornblende gabbros show significant high field strength elements (HFSEs) negative anomalies, enriched large ion lithophile elements (LILEs) and high zircon ε<sub>Hf</sub>(t) values, suggesting they formed by fluid-induced partial melting of a depleted mantle. Thermobarometry and phase equilibrium modelling suggest two stages of metamorphism for garnet–clinopyroxene amphibolites: (I) a peak metamorphic stage (~1.9 GPa and 1000°C) and (II) a retrograde metamorphic stage (1.1–1.6 GPa and 800–1000°C). Zircon U–Pb ages of amphibolite and hornblende gabbro are 128.8 ± 5.1 Ma and 128.1 ± 1.5 Ma, respectively, suggesting subduction initiation within the eastern Neo-Tethys occurred no later than 128 Ma and SSZ ophiolite formed at ~128 Ma. Apatite U–Pb ages of amphibolite and hornblende gabbro are 121.8 ± 2.1 Ma and 117.5 ± 4.5 Ma, respectively. Titanite U–Pb age of amphibolite is 122.2 ± 1.5 Ma. Overall, our data suggest that the metamorphic sole and SSZ ophiolite were exhumed since 128–118 Ma, and finally exhumed into the ophiolitic mélange.</p>\",\"PeriodicalId\":16472,\"journal\":{\"name\":\"Journal of Metamorphic Geology\",\"volume\":\"42 6\",\"pages\":\"843-865\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Metamorphic Geology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/jmg.12776\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Metamorphic Geology","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jmg.12776","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOLOGY","Score":null,"Total":0}
Coeval formation and exhumation of metamorphic sole and ophiolite in the Saga ophiolitic mélange: Insights into subduction initiation of the Neo-Tethys
Subduction initiation is recorded by upper plate magmatism and lower plate metamorphism, that is, supra-subduction zone (SSZ) ophiolite–metamorphic sole pair. Here, we report geochemical and geochronological data as well as P–T calculations of amphibolites (metamorphic sole) and hornblende gabbros (SSZ ophiolite) from the Saga ophiolitic mélange in Tibetan Plateau. Amphibolites show trace element contents compatible with normal-mid-ocean ridge basalt (N-MORB), indicating that the protolith of amphibolite formed in a MOR setting. Instead, hornblende gabbros show significant high field strength elements (HFSEs) negative anomalies, enriched large ion lithophile elements (LILEs) and high zircon εHf(t) values, suggesting they formed by fluid-induced partial melting of a depleted mantle. Thermobarometry and phase equilibrium modelling suggest two stages of metamorphism for garnet–clinopyroxene amphibolites: (I) a peak metamorphic stage (~1.9 GPa and 1000°C) and (II) a retrograde metamorphic stage (1.1–1.6 GPa and 800–1000°C). Zircon U–Pb ages of amphibolite and hornblende gabbro are 128.8 ± 5.1 Ma and 128.1 ± 1.5 Ma, respectively, suggesting subduction initiation within the eastern Neo-Tethys occurred no later than 128 Ma and SSZ ophiolite formed at ~128 Ma. Apatite U–Pb ages of amphibolite and hornblende gabbro are 121.8 ± 2.1 Ma and 117.5 ± 4.5 Ma, respectively. Titanite U–Pb age of amphibolite is 122.2 ± 1.5 Ma. Overall, our data suggest that the metamorphic sole and SSZ ophiolite were exhumed since 128–118 Ma, and finally exhumed into the ophiolitic mélange.
期刊介绍:
The journal, which is published nine times a year, encompasses the entire range of metamorphic studies, from the scale of the individual crystal to that of lithospheric plates, including regional studies of metamorphic terranes, modelling of metamorphic processes, microstructural and deformation studies in relation to metamorphism, geochronology and geochemistry in metamorphic systems, the experimental study of metamorphic reactions, properties of metamorphic minerals and rocks and the economic aspects of metamorphic terranes.