采用两步法对土液罐系统进行地震分析

Quan Huynh Van
{"title":"采用两步法对土液罐系统进行地震分析","authors":"Quan Huynh Van","doi":"10.47869/tcsj.75.4.2","DOIUrl":null,"url":null,"abstract":"Seismic analysis of soil-structure interaction (SSI) is a challenge due to the non-linearities of soil-foundation interaction (SFI). The reliability of the design and the analysis results will suffer if SSI is ignored. In this paper, a two-step method based on the superposition theorem is used to perform a seismic analysis of a soil-foundation-tank-liquid system (soil-liquid tank system). The SFI analysis was conducted in the first step using the CyclicTP program's finite-element method. Meanwhile, the liquid tank system was analyzed in the second step using the lumped-parameter method. Numerical simulations conducted in homogeneous strata of sand soil demonstrated that the responses of the liquid tank were 24–70% higher than the results of the fixed-base model. Compared to the sway-rocking model, these responses did not differ by 20%. This study also investigated cohesive soils of homogeneous clays and multiple strata. The paper recommends that future research investigate the experimentation, the geometric nonlinearity of the soil-foundation system, and the stress-strain analysis of the tank wall","PeriodicalId":235443,"journal":{"name":"Transport and Communications Science Journal","volume":"16 6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Seismic analysis of a soil-liquid tank system using the two-step method\",\"authors\":\"Quan Huynh Van\",\"doi\":\"10.47869/tcsj.75.4.2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Seismic analysis of soil-structure interaction (SSI) is a challenge due to the non-linearities of soil-foundation interaction (SFI). The reliability of the design and the analysis results will suffer if SSI is ignored. In this paper, a two-step method based on the superposition theorem is used to perform a seismic analysis of a soil-foundation-tank-liquid system (soil-liquid tank system). The SFI analysis was conducted in the first step using the CyclicTP program's finite-element method. Meanwhile, the liquid tank system was analyzed in the second step using the lumped-parameter method. Numerical simulations conducted in homogeneous strata of sand soil demonstrated that the responses of the liquid tank were 24–70% higher than the results of the fixed-base model. Compared to the sway-rocking model, these responses did not differ by 20%. This study also investigated cohesive soils of homogeneous clays and multiple strata. The paper recommends that future research investigate the experimentation, the geometric nonlinearity of the soil-foundation system, and the stress-strain analysis of the tank wall\",\"PeriodicalId\":235443,\"journal\":{\"name\":\"Transport and Communications Science Journal\",\"volume\":\"16 6\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transport and Communications Science Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.47869/tcsj.75.4.2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transport and Communications Science Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47869/tcsj.75.4.2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

由于土壤-地基相互作用(SFI)的非线性,土壤-结构相互作用(SSI)的地震分析是一项挑战。如果忽略 SSI,设计和分析结果的可靠性都将受到影响。本文采用基于叠加定理的两步法对土壤-地基-水箱-液体系统(土壤-液体水箱系统)进行抗震分析。第一步使用 CyclicTP 程序的有限元方法进行 SFI 分析。与此同时,在第二步中使用总块参数法对液槽系统进行了分析。在均质砂土地层中进行的数值模拟表明,液体槽的响应比固定基座模型的结果高出 24-70%。与摇摆-摇晃模型相比,这些响应没有 20% 的差异。这项研究还调查了均质粘土和多地层的粘性土壤。论文建议今后的研究应调查实验、土壤-地基系统的几何非线性以及水箱壁的应力-应变分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Seismic analysis of a soil-liquid tank system using the two-step method
Seismic analysis of soil-structure interaction (SSI) is a challenge due to the non-linearities of soil-foundation interaction (SFI). The reliability of the design and the analysis results will suffer if SSI is ignored. In this paper, a two-step method based on the superposition theorem is used to perform a seismic analysis of a soil-foundation-tank-liquid system (soil-liquid tank system). The SFI analysis was conducted in the first step using the CyclicTP program's finite-element method. Meanwhile, the liquid tank system was analyzed in the second step using the lumped-parameter method. Numerical simulations conducted in homogeneous strata of sand soil demonstrated that the responses of the liquid tank were 24–70% higher than the results of the fixed-base model. Compared to the sway-rocking model, these responses did not differ by 20%. This study also investigated cohesive soils of homogeneous clays and multiple strata. The paper recommends that future research investigate the experimentation, the geometric nonlinearity of the soil-foundation system, and the stress-strain analysis of the tank wall
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信