{"title":"磁致效应磁化/去磁过程中钆与流体之间热传递行为的近红外成像","authors":"T. Nguyen, Naoto Kakuta, K. Uchida, Hosei Nagano","doi":"10.1063/5.0207290","DOIUrl":null,"url":null,"abstract":"This paper reports on the application of a near-infrared (NIR) imaging system for visualizing heat transfer dynamics from a bulk gadolinium (Gd) sample to the surrounding water during the magnetization/demagnetization process of the magnetocaloric effect (MCE). The suggested approach relied on the spectral variation in water absorption band at 1150 nm wavelength within the NIR spectrum. An experimental setup integrated a telecentric uniform-illumination system, a halogen lamp, and an NIR camera to enable real-time monitoring of a single magnetization and demagnetization cycle induced by an external magnetic field, which was generated by a permanent-magnet-based magnetic circuit. Two-dimensional absorbance images captured during this cycle clearly depicted the thermal energy generated by the MCE in water. Furthermore, an analysis of the thermal boundary layer and the quantification of heat transfer from Gd to water provided insights into the dynamics over time. These results indicated the potential of our NIR imaging techniques in optimizing thermal–fluid interactions within MCE systems, thereby improving the design and efficiency of magnetic refrigeration systems.","PeriodicalId":502933,"journal":{"name":"Journal of Applied Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Near-infrared imaging of heat transfer behavior between gadolinium and fluid during magnetization/demagnetization process of magnetocaloric effect\",\"authors\":\"T. Nguyen, Naoto Kakuta, K. Uchida, Hosei Nagano\",\"doi\":\"10.1063/5.0207290\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper reports on the application of a near-infrared (NIR) imaging system for visualizing heat transfer dynamics from a bulk gadolinium (Gd) sample to the surrounding water during the magnetization/demagnetization process of the magnetocaloric effect (MCE). The suggested approach relied on the spectral variation in water absorption band at 1150 nm wavelength within the NIR spectrum. An experimental setup integrated a telecentric uniform-illumination system, a halogen lamp, and an NIR camera to enable real-time monitoring of a single magnetization and demagnetization cycle induced by an external magnetic field, which was generated by a permanent-magnet-based magnetic circuit. Two-dimensional absorbance images captured during this cycle clearly depicted the thermal energy generated by the MCE in water. Furthermore, an analysis of the thermal boundary layer and the quantification of heat transfer from Gd to water provided insights into the dynamics over time. These results indicated the potential of our NIR imaging techniques in optimizing thermal–fluid interactions within MCE systems, thereby improving the design and efficiency of magnetic refrigeration systems.\",\"PeriodicalId\":502933,\"journal\":{\"name\":\"Journal of Applied Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0207290\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0207290","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Near-infrared imaging of heat transfer behavior between gadolinium and fluid during magnetization/demagnetization process of magnetocaloric effect
This paper reports on the application of a near-infrared (NIR) imaging system for visualizing heat transfer dynamics from a bulk gadolinium (Gd) sample to the surrounding water during the magnetization/demagnetization process of the magnetocaloric effect (MCE). The suggested approach relied on the spectral variation in water absorption band at 1150 nm wavelength within the NIR spectrum. An experimental setup integrated a telecentric uniform-illumination system, a halogen lamp, and an NIR camera to enable real-time monitoring of a single magnetization and demagnetization cycle induced by an external magnetic field, which was generated by a permanent-magnet-based magnetic circuit. Two-dimensional absorbance images captured during this cycle clearly depicted the thermal energy generated by the MCE in water. Furthermore, an analysis of the thermal boundary layer and the quantification of heat transfer from Gd to water provided insights into the dynamics over time. These results indicated the potential of our NIR imaging techniques in optimizing thermal–fluid interactions within MCE systems, thereby improving the design and efficiency of magnetic refrigeration systems.