EPSOM-Hyb:应用于概率图形模型的对数边际似然通用估计器

IF 1.8 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Algorithms Pub Date : 2024-05-15 DOI:10.3390/a17050213
Eric Chuu, Yabo Niu, A. Bhattacharya, Debdeep Pati
{"title":"EPSOM-Hyb:应用于概率图形模型的对数边际似然通用估计器","authors":"Eric Chuu, Yabo Niu, A. Bhattacharya, Debdeep Pati","doi":"10.3390/a17050213","DOIUrl":null,"url":null,"abstract":"We consider the estimation of the marginal likelihood in Bayesian statistics, with primary emphasis on Gaussian graphical models, where the intractability of the marginal likelihood in high dimensions is a frequently researched problem. We propose a general algorithm that can be widely applied to a variety of problem settings and excels particularly when dealing with near log-concave posteriors. Our method builds upon a previously posited algorithm that uses MCMC samples to partition the parameter space and forms piecewise constant approximations over these partition sets as a means of estimating the normalizing constant. In this paper, we refine the aforementioned local approximations by taking advantage of the shape of the target distribution and leveraging an expectation propagation algorithm to approximate Gaussian integrals over rectangular polytopes. Our numerical experiments show the versatility and accuracy of the proposed estimator, even as the parameter space increases in dimension and becomes more complicated.","PeriodicalId":7636,"journal":{"name":"Algorithms","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"EPSOM-Hyb: A General Purpose Estimator of Log-Marginal Likelihoods with Applications in Probabilistic Graphical Models\",\"authors\":\"Eric Chuu, Yabo Niu, A. Bhattacharya, Debdeep Pati\",\"doi\":\"10.3390/a17050213\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the estimation of the marginal likelihood in Bayesian statistics, with primary emphasis on Gaussian graphical models, where the intractability of the marginal likelihood in high dimensions is a frequently researched problem. We propose a general algorithm that can be widely applied to a variety of problem settings and excels particularly when dealing with near log-concave posteriors. Our method builds upon a previously posited algorithm that uses MCMC samples to partition the parameter space and forms piecewise constant approximations over these partition sets as a means of estimating the normalizing constant. In this paper, we refine the aforementioned local approximations by taking advantage of the shape of the target distribution and leveraging an expectation propagation algorithm to approximate Gaussian integrals over rectangular polytopes. Our numerical experiments show the versatility and accuracy of the proposed estimator, even as the parameter space increases in dimension and becomes more complicated.\",\"PeriodicalId\":7636,\"journal\":{\"name\":\"Algorithms\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algorithms\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/a17050213\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algorithms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/a17050213","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑的是贝叶斯统计中的边际似然估计,主要侧重于高斯图形模型,其中高维度边际似然的难解性是一个经常被研究的问题。我们提出了一种通用算法,该算法可广泛应用于各种问题设置,尤其在处理近对数凹后验时表现出色。我们的方法建立在之前提出的算法基础之上,该算法使用 MCMC 样本分割参数空间,并在这些分割集上形成片断常数近似值,以此来估计归一化常数。在本文中,我们利用目标分布的形状和期望传播算法来近似矩形多边形上的高斯积分,从而改进了上述局部近似方法。我们的数值实验表明,即使参数空间的维度增加、变得更加复杂,我们所提出的估计方法仍具有多功能性和准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
EPSOM-Hyb: A General Purpose Estimator of Log-Marginal Likelihoods with Applications in Probabilistic Graphical Models
We consider the estimation of the marginal likelihood in Bayesian statistics, with primary emphasis on Gaussian graphical models, where the intractability of the marginal likelihood in high dimensions is a frequently researched problem. We propose a general algorithm that can be widely applied to a variety of problem settings and excels particularly when dealing with near log-concave posteriors. Our method builds upon a previously posited algorithm that uses MCMC samples to partition the parameter space and forms piecewise constant approximations over these partition sets as a means of estimating the normalizing constant. In this paper, we refine the aforementioned local approximations by taking advantage of the shape of the target distribution and leveraging an expectation propagation algorithm to approximate Gaussian integrals over rectangular polytopes. Our numerical experiments show the versatility and accuracy of the proposed estimator, even as the parameter space increases in dimension and becomes more complicated.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Algorithms
Algorithms Mathematics-Numerical Analysis
CiteScore
4.10
自引率
4.30%
发文量
394
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信