Christina L. Gardner, Rebecca A. Erwin-Cohen, Bridget S. Lewis, Russell R. Bakken, Shelley P. Honnold, Pamela J. Glass, Crystal W. Burke
{"title":"叙利亚仓鼠模型在气溶胶暴露于脑阿尔法病毒后并不反映类似人类的疾病","authors":"Christina L. Gardner, Rebecca A. Erwin-Cohen, Bridget S. Lewis, Russell R. Bakken, Shelley P. Honnold, Pamela J. Glass, Crystal W. Burke","doi":"10.3390/mps7030042","DOIUrl":null,"url":null,"abstract":"Venezuelan (VEE), eastern (EEE), and western (WEE) equine encephalitis viruses are encephalitic New World alphaviruses that cause periodic epizootic and epidemic outbreaks in horses and humans that may cause severe morbidity and mortality. Currently there are no FDA-licensed vaccines or effective antiviral therapies. Each year, there are a limited number of human cases of encephalitic alphaviruses; thus, licensure of a vaccine or therapeutic would require approval under the FDA animal rule. Approval under the FDA animal rule requires the disease observed in the animal model to recapitulate what is observed in humans. Currently, initial testing of vaccines and therapeutics is performed in the mouse model. Unfortunately, alphavirus disease manifestations in a mouse do not faithfully recapitulate human disease; the VEEV mouse model is lethal whereas in humans VEEV is rarely lethal. In an effort to identify a more appropriate small animal model, we evaluated hamsters in an aerosol exposure model of encephalitic alphavirus infection. The pathology, lethality, and viremia observed in the infected hamsters was inconsistent with what is observed in NHP models and humans. These data suggest that hamsters are not an appropriate model for encephalitic alphaviruses to test vaccines or potential antiviral therapies.","PeriodicalId":18715,"journal":{"name":"Methods and Protocols","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Syrian Hamsters Model Does Not Reflect Human-Like Disease after Aerosol Exposure to Encephalitic Alphaviruses\",\"authors\":\"Christina L. Gardner, Rebecca A. Erwin-Cohen, Bridget S. Lewis, Russell R. Bakken, Shelley P. Honnold, Pamela J. Glass, Crystal W. Burke\",\"doi\":\"10.3390/mps7030042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Venezuelan (VEE), eastern (EEE), and western (WEE) equine encephalitis viruses are encephalitic New World alphaviruses that cause periodic epizootic and epidemic outbreaks in horses and humans that may cause severe morbidity and mortality. Currently there are no FDA-licensed vaccines or effective antiviral therapies. Each year, there are a limited number of human cases of encephalitic alphaviruses; thus, licensure of a vaccine or therapeutic would require approval under the FDA animal rule. Approval under the FDA animal rule requires the disease observed in the animal model to recapitulate what is observed in humans. Currently, initial testing of vaccines and therapeutics is performed in the mouse model. Unfortunately, alphavirus disease manifestations in a mouse do not faithfully recapitulate human disease; the VEEV mouse model is lethal whereas in humans VEEV is rarely lethal. In an effort to identify a more appropriate small animal model, we evaluated hamsters in an aerosol exposure model of encephalitic alphavirus infection. The pathology, lethality, and viremia observed in the infected hamsters was inconsistent with what is observed in NHP models and humans. These data suggest that hamsters are not an appropriate model for encephalitic alphaviruses to test vaccines or potential antiviral therapies.\",\"PeriodicalId\":18715,\"journal\":{\"name\":\"Methods and Protocols\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Methods and Protocols\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/mps7030042\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods and Protocols","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/mps7030042","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Syrian Hamsters Model Does Not Reflect Human-Like Disease after Aerosol Exposure to Encephalitic Alphaviruses
Venezuelan (VEE), eastern (EEE), and western (WEE) equine encephalitis viruses are encephalitic New World alphaviruses that cause periodic epizootic and epidemic outbreaks in horses and humans that may cause severe morbidity and mortality. Currently there are no FDA-licensed vaccines or effective antiviral therapies. Each year, there are a limited number of human cases of encephalitic alphaviruses; thus, licensure of a vaccine or therapeutic would require approval under the FDA animal rule. Approval under the FDA animal rule requires the disease observed in the animal model to recapitulate what is observed in humans. Currently, initial testing of vaccines and therapeutics is performed in the mouse model. Unfortunately, alphavirus disease manifestations in a mouse do not faithfully recapitulate human disease; the VEEV mouse model is lethal whereas in humans VEEV is rarely lethal. In an effort to identify a more appropriate small animal model, we evaluated hamsters in an aerosol exposure model of encephalitic alphavirus infection. The pathology, lethality, and viremia observed in the infected hamsters was inconsistent with what is observed in NHP models and humans. These data suggest that hamsters are not an appropriate model for encephalitic alphaviruses to test vaccines or potential antiviral therapies.