论 de Branges-Rovnyak 空间中泰勒级数的发散性

Pierre-Olivier Parisé, Thomas Ransford
{"title":"论 de Branges-Rovnyak 空间中泰勒级数的发散性","authors":"Pierre-Olivier Parisé, Thomas Ransford","doi":"10.1090/bproc/176","DOIUrl":null,"url":null,"abstract":"It is known that there exist functions in certain de Branges–Rovnyak spaces whose Taylor series diverge in norm, even though polynomials are dense in the space. This is often proved by showing that the sequence of Taylor partial sums is unbounded in norm. In this note we show that it can even happen that the Taylor partial sums tend to infinity in norm. We also establish similar results for lower-triangular summability methods such as the Cesàro means.","PeriodicalId":106316,"journal":{"name":"Proceedings of the American Mathematical Society, Series B","volume":"70 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the divergence of Taylor series in de Branges–Rovnyak spaces\",\"authors\":\"Pierre-Olivier Parisé, Thomas Ransford\",\"doi\":\"10.1090/bproc/176\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is known that there exist functions in certain de Branges–Rovnyak spaces whose Taylor series diverge in norm, even though polynomials are dense in the space. This is often proved by showing that the sequence of Taylor partial sums is unbounded in norm. In this note we show that it can even happen that the Taylor partial sums tend to infinity in norm. We also establish similar results for lower-triangular summability methods such as the Cesàro means.\",\"PeriodicalId\":106316,\"journal\":{\"name\":\"Proceedings of the American Mathematical Society, Series B\",\"volume\":\"70 3\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the American Mathematical Society, Series B\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/bproc/176\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the American Mathematical Society, Series B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/bproc/176","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

众所周知,在某些 de Branges-Rovnyak 空间中存在函数,即使多项式在该空间中是密集的,其泰勒级数在规范上也是发散的。这通常是通过证明泰勒偏和序列在规范上是无界的来证明的。在本说明中,我们将证明泰勒偏和在常模上趋于无穷大的情况。我们还为低三角求和方法(如 Cesàro means)建立了类似的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the divergence of Taylor series in de Branges–Rovnyak spaces
It is known that there exist functions in certain de Branges–Rovnyak spaces whose Taylor series diverge in norm, even though polynomials are dense in the space. This is often proved by showing that the sequence of Taylor partial sums is unbounded in norm. In this note we show that it can even happen that the Taylor partial sums tend to infinity in norm. We also establish similar results for lower-triangular summability methods such as the Cesàro means.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信