稳健的多重停止--二元方法

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
R. Laeven, John G. M. Schoenmakers, Nikolaus Schweizer, M. Stadje
{"title":"稳健的多重停止--二元方法","authors":"R. Laeven, John G. M. Schoenmakers, Nikolaus Schweizer, M. Stadje","doi":"10.1287/moor.2021.0237","DOIUrl":null,"url":null,"abstract":"We develop a method to solve, theoretically and numerically, general optimal stopping problems. Our general setting allows for multiple exercise rights—that is, optimal multiple stopping—for a robust evaluation that accounts for model uncertainty with a dominated family of priors and for general reward processes driven by multidimensional jump-diffusions. Our approach relies on first establishing robust martingale dual representation results for the multiple stopping problem that satisfy appealing almost sure pathwise optimality properties. Next, we exploit these theoretical results to develop upper and lower bounds that, as we formally show, not only converge to the true solution asymptotically, but also constitute genuine prelimiting upper and lower bounds. We illustrate the applicability of our approach in a few examples and analyze the impact of model uncertainty on optimal multiple stopping strategies. Funding: R. J. A. Laeven received financial support from the Netherlands Organization for Scientific Research (NWO) [Grants NWO-Vidi and NWO-Vici]. J. G. M. Schoenmakers received financial support from the Deutsche Forschungsgemeinschaft Excellence Cluster Math+ Berlin [Project AA4-2]. Supplemental Material: The online appendix is available at https://doi.org/10.1287/moor.2021.0237 .","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Robust Multiple Stopping—A Duality Approach\",\"authors\":\"R. Laeven, John G. M. Schoenmakers, Nikolaus Schweizer, M. Stadje\",\"doi\":\"10.1287/moor.2021.0237\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We develop a method to solve, theoretically and numerically, general optimal stopping problems. Our general setting allows for multiple exercise rights—that is, optimal multiple stopping—for a robust evaluation that accounts for model uncertainty with a dominated family of priors and for general reward processes driven by multidimensional jump-diffusions. Our approach relies on first establishing robust martingale dual representation results for the multiple stopping problem that satisfy appealing almost sure pathwise optimality properties. Next, we exploit these theoretical results to develop upper and lower bounds that, as we formally show, not only converge to the true solution asymptotically, but also constitute genuine prelimiting upper and lower bounds. We illustrate the applicability of our approach in a few examples and analyze the impact of model uncertainty on optimal multiple stopping strategies. Funding: R. J. A. Laeven received financial support from the Netherlands Organization for Scientific Research (NWO) [Grants NWO-Vidi and NWO-Vici]. J. G. M. Schoenmakers received financial support from the Deutsche Forschungsgemeinschaft Excellence Cluster Math+ Berlin [Project AA4-2]. Supplemental Material: The online appendix is available at https://doi.org/10.1287/moor.2021.0237 .\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1287/moor.2021.0237\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1287/moor.2021.0237","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

摘要

我们开发了一种从理论和数值上解决一般最优停止问题的方法。我们的一般设置允许多重行使权,即最优多重止损,以进行稳健的评估,考虑到模型的不确定性,以及由多维跳跃扩散驱动的一般奖励过程。我们的方法依赖于首先为多重停止问题建立稳健的马丁格尔对偶表示结果,这些结果满足吸引人的几乎确定的路径最优性属性。接下来,我们利用这些理论结果来开发上界和下界,正如我们正式展示的那样,这些上界和下界不仅能渐进地收敛到真解,而且还能构成真正的预设上界和下界。我们用几个例子说明了我们方法的适用性,并分析了模型不确定性对最优多重停止策略的影响。资金:R. J. A. Laeven 获得了荷兰科学研究组织 (NWO) [NWO-Vidi 和 NWO-Vici] 的资助。J. G. M. Schoenmakers 获得了德国科学基金会卓越集群 Math+ Berlin [项目 AA4-2] 的资助。补充材料:在线附录见 https://doi.org/10.1287/moor.2021.0237 。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robust Multiple Stopping—A Duality Approach
We develop a method to solve, theoretically and numerically, general optimal stopping problems. Our general setting allows for multiple exercise rights—that is, optimal multiple stopping—for a robust evaluation that accounts for model uncertainty with a dominated family of priors and for general reward processes driven by multidimensional jump-diffusions. Our approach relies on first establishing robust martingale dual representation results for the multiple stopping problem that satisfy appealing almost sure pathwise optimality properties. Next, we exploit these theoretical results to develop upper and lower bounds that, as we formally show, not only converge to the true solution asymptotically, but also constitute genuine prelimiting upper and lower bounds. We illustrate the applicability of our approach in a few examples and analyze the impact of model uncertainty on optimal multiple stopping strategies. Funding: R. J. A. Laeven received financial support from the Netherlands Organization for Scientific Research (NWO) [Grants NWO-Vidi and NWO-Vici]. J. G. M. Schoenmakers received financial support from the Deutsche Forschungsgemeinschaft Excellence Cluster Math+ Berlin [Project AA4-2]. Supplemental Material: The online appendix is available at https://doi.org/10.1287/moor.2021.0237 .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信