Branimir Stamenkovic, Ying Shirley Meng, Philippe MOREAU, Joël Gaubicher
{"title":"从卤化物固体电解质的电化学中获取燃料","authors":"Branimir Stamenkovic, Ying Shirley Meng, Philippe MOREAU, Joël Gaubicher","doi":"10.1149/1945-7111/ad4c99","DOIUrl":null,"url":null,"abstract":"\n Unveiling the electrochemistry of solid-state Li2ZrCl6 halide electrolyte, we reveal its dual function as both an ion conductor and a supplementary electron source/sink. This groundbreaking discovery leads to a remarkable long-term enhancement of the specific capacity of industry-relevant heavily loaded LiFePO4 electrodes by several tens of percent, while significantly amplifying that of Si-based or anode-less full cells through effective compensation for side reactions. We show that these effects can potentially be tuned by adjusting the initial xLiCl-ZrCl4 composition of the solid electrolyte, which may thus become a new and mighty parameter for balancing the two electrodes.","PeriodicalId":509718,"journal":{"name":"Journal of The Electrochemical Society","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fueling from the Electrochemistry of Halide Solid Electrolytes\",\"authors\":\"Branimir Stamenkovic, Ying Shirley Meng, Philippe MOREAU, Joël Gaubicher\",\"doi\":\"10.1149/1945-7111/ad4c99\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Unveiling the electrochemistry of solid-state Li2ZrCl6 halide electrolyte, we reveal its dual function as both an ion conductor and a supplementary electron source/sink. This groundbreaking discovery leads to a remarkable long-term enhancement of the specific capacity of industry-relevant heavily loaded LiFePO4 electrodes by several tens of percent, while significantly amplifying that of Si-based or anode-less full cells through effective compensation for side reactions. We show that these effects can potentially be tuned by adjusting the initial xLiCl-ZrCl4 composition of the solid electrolyte, which may thus become a new and mighty parameter for balancing the two electrodes.\",\"PeriodicalId\":509718,\"journal\":{\"name\":\"Journal of The Electrochemical Society\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of The Electrochemical Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1149/1945-7111/ad4c99\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Electrochemical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1149/1945-7111/ad4c99","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Fueling from the Electrochemistry of Halide Solid Electrolytes
Unveiling the electrochemistry of solid-state Li2ZrCl6 halide electrolyte, we reveal its dual function as both an ion conductor and a supplementary electron source/sink. This groundbreaking discovery leads to a remarkable long-term enhancement of the specific capacity of industry-relevant heavily loaded LiFePO4 electrodes by several tens of percent, while significantly amplifying that of Si-based or anode-less full cells through effective compensation for side reactions. We show that these effects can potentially be tuned by adjusting the initial xLiCl-ZrCl4 composition of the solid electrolyte, which may thus become a new and mighty parameter for balancing the two electrodes.