Sarbari Karmakar, Ruma Kumbhakar, Shilpa Garai, Fatemeh Parastesh, S. Jafari, Nikhil Pal
{"title":"离散时间食物链模型的复杂动力学","authors":"Sarbari Karmakar, Ruma Kumbhakar, Shilpa Garai, Fatemeh Parastesh, S. Jafari, Nikhil Pal","doi":"10.1142/s0218127424500780","DOIUrl":null,"url":null,"abstract":"In a food chain, the role of intake patterns of predators is very influential on the survival and extinction of the interacting species as well as the entire dynamics of the ecological system. In this study, we investigate the affluent and intricate dynamics of a simple three-species food chain model in a discrete-time framework by analyzing the parameter plane of the system with simultaneous changes of two crucial parameters, the predation rates of middle and top predators. From the theoretical viewpoint, we study the model by determining the fixed points’ biological feasibility and local asymptotic stability criteria, and performing some analyses of local bifurcations, namely, transcritical, flip, and Neimark–Sacker bifurcations. Here, we initiate the numerical simulation by plotting the changes of the prey population density in terms of a vital parameter of the system, and we observe the switching among different dynamical behaviors of the system. We also draw some phase portraits and plot the time series solutions to show the diverse characteristics of the system dynamics. Further, we move one step ahead to explore the intricate dynamical scenarios appearing in the parameter plane by forming Lyapunov exponent and isoperiodic diagrams. In the parameter plane of the system, we see the emergence of innumerable Arnold tongues. All these Arnold tongues are organized along a particular direction, and the beautiful arrangement of these tongues forms several kinds of period-adding sequences. The study sheds more light on various types of multistability occurring in the model system. We see the coexistence of three periodic attractors in the parameter plane. In this study, the most striking observation is the coexistence of four periodic attractors, which occurs infrequently in ecological systems. We draw the basins of attraction for the tristable and tetrastable attractors, which are complex Wada basins. A system with Wada basin is very sensitive to initial conditions and more erratic in nature than a system with fractal basin. Also, we plot the density of all interacting species in terms of the predation rates of middle and top predators and observe the variation in the population densities of all species with the variability of these two key parameters. In the parameter plane created by the simultaneous changes of two parameters, the system exhibits a variety of intricate and subtle dynamics, which cannot be found by changing only a single parameter.","PeriodicalId":50337,"journal":{"name":"International Journal of Bifurcation and Chaos","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Complex Dynamics of a Discrete-Time Food Chain Model\",\"authors\":\"Sarbari Karmakar, Ruma Kumbhakar, Shilpa Garai, Fatemeh Parastesh, S. Jafari, Nikhil Pal\",\"doi\":\"10.1142/s0218127424500780\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In a food chain, the role of intake patterns of predators is very influential on the survival and extinction of the interacting species as well as the entire dynamics of the ecological system. In this study, we investigate the affluent and intricate dynamics of a simple three-species food chain model in a discrete-time framework by analyzing the parameter plane of the system with simultaneous changes of two crucial parameters, the predation rates of middle and top predators. From the theoretical viewpoint, we study the model by determining the fixed points’ biological feasibility and local asymptotic stability criteria, and performing some analyses of local bifurcations, namely, transcritical, flip, and Neimark–Sacker bifurcations. Here, we initiate the numerical simulation by plotting the changes of the prey population density in terms of a vital parameter of the system, and we observe the switching among different dynamical behaviors of the system. We also draw some phase portraits and plot the time series solutions to show the diverse characteristics of the system dynamics. Further, we move one step ahead to explore the intricate dynamical scenarios appearing in the parameter plane by forming Lyapunov exponent and isoperiodic diagrams. In the parameter plane of the system, we see the emergence of innumerable Arnold tongues. All these Arnold tongues are organized along a particular direction, and the beautiful arrangement of these tongues forms several kinds of period-adding sequences. The study sheds more light on various types of multistability occurring in the model system. We see the coexistence of three periodic attractors in the parameter plane. In this study, the most striking observation is the coexistence of four periodic attractors, which occurs infrequently in ecological systems. We draw the basins of attraction for the tristable and tetrastable attractors, which are complex Wada basins. A system with Wada basin is very sensitive to initial conditions and more erratic in nature than a system with fractal basin. Also, we plot the density of all interacting species in terms of the predation rates of middle and top predators and observe the variation in the population densities of all species with the variability of these two key parameters. In the parameter plane created by the simultaneous changes of two parameters, the system exhibits a variety of intricate and subtle dynamics, which cannot be found by changing only a single parameter.\",\"PeriodicalId\":50337,\"journal\":{\"name\":\"International Journal of Bifurcation and Chaos\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Bifurcation and Chaos\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s0218127424500780\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Bifurcation and Chaos","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0218127424500780","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Complex Dynamics of a Discrete-Time Food Chain Model
In a food chain, the role of intake patterns of predators is very influential on the survival and extinction of the interacting species as well as the entire dynamics of the ecological system. In this study, we investigate the affluent and intricate dynamics of a simple three-species food chain model in a discrete-time framework by analyzing the parameter plane of the system with simultaneous changes of two crucial parameters, the predation rates of middle and top predators. From the theoretical viewpoint, we study the model by determining the fixed points’ biological feasibility and local asymptotic stability criteria, and performing some analyses of local bifurcations, namely, transcritical, flip, and Neimark–Sacker bifurcations. Here, we initiate the numerical simulation by plotting the changes of the prey population density in terms of a vital parameter of the system, and we observe the switching among different dynamical behaviors of the system. We also draw some phase portraits and plot the time series solutions to show the diverse characteristics of the system dynamics. Further, we move one step ahead to explore the intricate dynamical scenarios appearing in the parameter plane by forming Lyapunov exponent and isoperiodic diagrams. In the parameter plane of the system, we see the emergence of innumerable Arnold tongues. All these Arnold tongues are organized along a particular direction, and the beautiful arrangement of these tongues forms several kinds of period-adding sequences. The study sheds more light on various types of multistability occurring in the model system. We see the coexistence of three periodic attractors in the parameter plane. In this study, the most striking observation is the coexistence of four periodic attractors, which occurs infrequently in ecological systems. We draw the basins of attraction for the tristable and tetrastable attractors, which are complex Wada basins. A system with Wada basin is very sensitive to initial conditions and more erratic in nature than a system with fractal basin. Also, we plot the density of all interacting species in terms of the predation rates of middle and top predators and observe the variation in the population densities of all species with the variability of these two key parameters. In the parameter plane created by the simultaneous changes of two parameters, the system exhibits a variety of intricate and subtle dynamics, which cannot be found by changing only a single parameter.
期刊介绍:
The International Journal of Bifurcation and Chaos is widely regarded as a leading journal in the exciting fields of chaos theory and nonlinear science. Represented by an international editorial board comprising top researchers from a wide variety of disciplines, it is setting high standards in scientific and production quality. The journal has been reputedly acclaimed by the scientific community around the world, and has featured many important papers by leading researchers from various areas of applied sciences and engineering.
The discipline of chaos theory has created a universal paradigm, a scientific parlance, and a mathematical tool for grappling with complex dynamical phenomena. In every field of applied sciences (astronomy, atmospheric sciences, biology, chemistry, economics, geophysics, life and medical sciences, physics, social sciences, ecology, etc.) and engineering (aerospace, chemical, electronic, civil, computer, information, mechanical, software, telecommunication, etc.), the local and global manifestations of chaos and bifurcation have burst forth in an unprecedented universality, linking scientists heretofore unfamiliar with one another''s fields, and offering an opportunity to reshape our grasp of reality.