Jason Finley, Boniface O Fosu, Chris Fuhrmann, Andrew Mercer, Johna E. Rudzin
{"title":"利用聚类量化东热带太平洋海表温度模式对下游气候的影响","authors":"Jason Finley, Boniface O Fosu, Chris Fuhrmann, Andrew Mercer, Johna E. Rudzin","doi":"10.3390/cli12050071","DOIUrl":null,"url":null,"abstract":"El Niño–Southern Oscillation (ENSO) phases and flavors, as well as off-equatorial climate modes, strongly influence sea surface temperature (SST) patterns in the eastern tropical Pacific and downstream climate. Prior studies rely on EOFs (which characterize fractional SST variance) to diagnose climate-scale SST structures, limiting the ability to link individual ENSO flavors with downstream phenomena. Hierarchical and k-means clustering methods are used to construct Eastern Pacific patterns from the ERSST dataset spanning 1950 to 2021. Cluster analysis allows for the direct linkage of individual SST years/seasons to ENSO phase, providing insight into ENSO flavors and associated downstream impacts. In this study, four clusters are revealed, each depicting unique SST patterns influenced by ENSO and Pacific Meridional Mode (PMM) phases. A case study demonstrating the utility of the clusters was also carried out using accumulated cyclone energy (ACE) in the Atlantic and Eastern Pacific basins. Results showed that Eastern Pacific (EP) El Niño suppresses Atlantic tropical cyclone (TC) activity, while Central Pacific (CP) La Niña enhances it. Further, EP El Niño, coupled with positive PMM, amplifies ACE. Ultimately, the methods used herein offer a cleaner analysis tool for identifying dominant SSTA patterns and employing those patterns to diagnose downstream climatic effects.","PeriodicalId":37615,"journal":{"name":"Climate","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantifying Downstream Climate Impacts of Sea Surface Temperature Patterns in the Eastern Tropical Pacific Using Clustering\",\"authors\":\"Jason Finley, Boniface O Fosu, Chris Fuhrmann, Andrew Mercer, Johna E. Rudzin\",\"doi\":\"10.3390/cli12050071\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"El Niño–Southern Oscillation (ENSO) phases and flavors, as well as off-equatorial climate modes, strongly influence sea surface temperature (SST) patterns in the eastern tropical Pacific and downstream climate. Prior studies rely on EOFs (which characterize fractional SST variance) to diagnose climate-scale SST structures, limiting the ability to link individual ENSO flavors with downstream phenomena. Hierarchical and k-means clustering methods are used to construct Eastern Pacific patterns from the ERSST dataset spanning 1950 to 2021. Cluster analysis allows for the direct linkage of individual SST years/seasons to ENSO phase, providing insight into ENSO flavors and associated downstream impacts. In this study, four clusters are revealed, each depicting unique SST patterns influenced by ENSO and Pacific Meridional Mode (PMM) phases. A case study demonstrating the utility of the clusters was also carried out using accumulated cyclone energy (ACE) in the Atlantic and Eastern Pacific basins. Results showed that Eastern Pacific (EP) El Niño suppresses Atlantic tropical cyclone (TC) activity, while Central Pacific (CP) La Niña enhances it. Further, EP El Niño, coupled with positive PMM, amplifies ACE. Ultimately, the methods used herein offer a cleaner analysis tool for identifying dominant SSTA patterns and employing those patterns to diagnose downstream climatic effects.\",\"PeriodicalId\":37615,\"journal\":{\"name\":\"Climate\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Climate\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/cli12050071\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Climate","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/cli12050071","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
Quantifying Downstream Climate Impacts of Sea Surface Temperature Patterns in the Eastern Tropical Pacific Using Clustering
El Niño–Southern Oscillation (ENSO) phases and flavors, as well as off-equatorial climate modes, strongly influence sea surface temperature (SST) patterns in the eastern tropical Pacific and downstream climate. Prior studies rely on EOFs (which characterize fractional SST variance) to diagnose climate-scale SST structures, limiting the ability to link individual ENSO flavors with downstream phenomena. Hierarchical and k-means clustering methods are used to construct Eastern Pacific patterns from the ERSST dataset spanning 1950 to 2021. Cluster analysis allows for the direct linkage of individual SST years/seasons to ENSO phase, providing insight into ENSO flavors and associated downstream impacts. In this study, four clusters are revealed, each depicting unique SST patterns influenced by ENSO and Pacific Meridional Mode (PMM) phases. A case study demonstrating the utility of the clusters was also carried out using accumulated cyclone energy (ACE) in the Atlantic and Eastern Pacific basins. Results showed that Eastern Pacific (EP) El Niño suppresses Atlantic tropical cyclone (TC) activity, while Central Pacific (CP) La Niña enhances it. Further, EP El Niño, coupled with positive PMM, amplifies ACE. Ultimately, the methods used herein offer a cleaner analysis tool for identifying dominant SSTA patterns and employing those patterns to diagnose downstream climatic effects.
ClimateEarth and Planetary Sciences-Atmospheric Science
CiteScore
5.50
自引率
5.40%
发文量
172
审稿时长
11 weeks
期刊介绍:
Climate is an independent, international and multi-disciplinary open access journal focusing on climate processes of the earth, covering all scales and involving modelling and observation methods. The scope of Climate includes: Global climate Regional climate Urban climate Multiscale climate Polar climate Tropical climate Climate downscaling Climate process and sensitivity studies Climate dynamics Climate variability (Interseasonal, interannual to decadal) Feedbacks between local, regional, and global climate change Anthropogenic climate change Climate and monsoon Cloud and precipitation predictions Past, present, and projected climate change Hydroclimate.