{"title":"同质贝索夫空间中分数凯勒-西格尔-纳维尔-斯托克斯方程的良好拟合和时间衰减","authors":"Ziwen Jiang, Lizhen Wang","doi":"10.1002/mana.202300325","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we consider the parabolic–elliptic Keller–Segel system, which is coupled to the incompressible Navier–Stokes equations through transportation and friction. It is shown that when the system is diffused by Lévy motion, the well-posedness of the mild solution to the corresponding Cauchy problem in homogeneous Besov spaces is established by means of the Banach fixed point theorem. Furthermore, we prove the Lorentz regularity in time direction and the maximal regularity of solutions. In addition, we obtain the additional regularity and explore the time decay property of global mild solutions.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Well-posedness and time decay of fractional Keller–Segel–Navier-Stokes equations in homogeneous Besov spaces\",\"authors\":\"Ziwen Jiang, Lizhen Wang\",\"doi\":\"10.1002/mana.202300325\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we consider the parabolic–elliptic Keller–Segel system, which is coupled to the incompressible Navier–Stokes equations through transportation and friction. It is shown that when the system is diffused by Lévy motion, the well-posedness of the mild solution to the corresponding Cauchy problem in homogeneous Besov spaces is established by means of the Banach fixed point theorem. Furthermore, we prove the Lorentz regularity in time direction and the maximal regularity of solutions. In addition, we obtain the additional regularity and explore the time decay property of global mild solutions.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mana.202300325\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mana.202300325","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Well-posedness and time decay of fractional Keller–Segel–Navier-Stokes equations in homogeneous Besov spaces
In this paper, we consider the parabolic–elliptic Keller–Segel system, which is coupled to the incompressible Navier–Stokes equations through transportation and friction. It is shown that when the system is diffused by Lévy motion, the well-posedness of the mild solution to the corresponding Cauchy problem in homogeneous Besov spaces is established by means of the Banach fixed point theorem. Furthermore, we prove the Lorentz regularity in time direction and the maximal regularity of solutions. In addition, we obtain the additional regularity and explore the time decay property of global mild solutions.