同质贝索夫空间中分数凯勒-西格尔-纳维尔-斯托克斯方程的良好拟合和时间衰减

Pub Date : 2024-05-16 DOI:10.1002/mana.202300325
Ziwen Jiang, Lizhen Wang
{"title":"同质贝索夫空间中分数凯勒-西格尔-纳维尔-斯托克斯方程的良好拟合和时间衰减","authors":"Ziwen Jiang,&nbsp;Lizhen Wang","doi":"10.1002/mana.202300325","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we consider the parabolic–elliptic Keller–Segel system, which is coupled to the incompressible Navier–Stokes equations through transportation and friction. It is shown that when the system is diffused by Lévy motion, the well-posedness of the mild solution to the corresponding Cauchy problem in homogeneous Besov spaces is established by means of the Banach fixed point theorem. Furthermore, we prove the Lorentz regularity in time direction and the maximal regularity of solutions. In addition, we obtain the additional regularity and explore the time decay property of global mild solutions.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Well-posedness and time decay of fractional Keller–Segel–Navier-Stokes equations in homogeneous Besov spaces\",\"authors\":\"Ziwen Jiang,&nbsp;Lizhen Wang\",\"doi\":\"10.1002/mana.202300325\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we consider the parabolic–elliptic Keller–Segel system, which is coupled to the incompressible Navier–Stokes equations through transportation and friction. It is shown that when the system is diffused by Lévy motion, the well-posedness of the mild solution to the corresponding Cauchy problem in homogeneous Besov spaces is established by means of the Banach fixed point theorem. Furthermore, we prove the Lorentz regularity in time direction and the maximal regularity of solutions. In addition, we obtain the additional regularity and explore the time decay property of global mild solutions.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mana.202300325\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mana.202300325","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文考虑了抛物-椭圆 Keller-Segel 系统,该系统通过传输和摩擦与不可压缩 Navier-Stokes 方程耦合。结果表明,当该系统通过莱维运动扩散时,通过巴纳赫定点定理建立了同质贝索夫空间中相应考希问题温和解的良好拟合性。此外,我们还证明了时间方向上的洛伦兹正则性和解的最大正则性。此外,我们还获得了附加正则性,并探索了全局温和解的时间衰减特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Well-posedness and time decay of fractional Keller–Segel–Navier-Stokes equations in homogeneous Besov spaces

In this paper, we consider the parabolic–elliptic Keller–Segel system, which is coupled to the incompressible Navier–Stokes equations through transportation and friction. It is shown that when the system is diffused by Lévy motion, the well-posedness of the mild solution to the corresponding Cauchy problem in homogeneous Besov spaces is established by means of the Banach fixed point theorem. Furthermore, we prove the Lorentz regularity in time direction and the maximal regularity of solutions. In addition, we obtain the additional regularity and explore the time decay property of global mild solutions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信