{"title":"利用树状模型进行特征选择,并通过卷积神经网络进行分类,用于结构损伤检测","authors":"Zihan Jin, Jiqiao Zhang, Qianpeng He, Silang Zhu, Tianlong Ouyang, Gongfa Chen","doi":"10.1007/s10338-024-00491-7","DOIUrl":null,"url":null,"abstract":"<div><p>Structural damage detection (SDD) remains highly challenging, due to the difficulty in selecting the optimal damage features from a vast amount of information. In this study, a tree model-based method using decision tree and random forest was employed for feature selection of vibration response signals in SDD. Signal datasets were obtained by numerical experiments and vibration experiments, respectively. Dataset features extracted using this method were input into a convolutional neural network to determine the location of structural damage. Results indicated a 5% to 10% improvement in detection accuracy compared to using original datasets without feature selection, demonstrating the feasibility of this method. The proposed method, based on tree model and classification, addresses the issue of extracting effective information from numerous vibration response signals in structural health monitoring.</p></div>","PeriodicalId":50892,"journal":{"name":"Acta Mechanica Solida Sinica","volume":"37 3","pages":"498 - 518"},"PeriodicalIF":2.0000,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Feature Selection Using Tree Model and Classification Through Convolutional Neural Network for Structural Damage Detection\",\"authors\":\"Zihan Jin, Jiqiao Zhang, Qianpeng He, Silang Zhu, Tianlong Ouyang, Gongfa Chen\",\"doi\":\"10.1007/s10338-024-00491-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Structural damage detection (SDD) remains highly challenging, due to the difficulty in selecting the optimal damage features from a vast amount of information. In this study, a tree model-based method using decision tree and random forest was employed for feature selection of vibration response signals in SDD. Signal datasets were obtained by numerical experiments and vibration experiments, respectively. Dataset features extracted using this method were input into a convolutional neural network to determine the location of structural damage. Results indicated a 5% to 10% improvement in detection accuracy compared to using original datasets without feature selection, demonstrating the feasibility of this method. The proposed method, based on tree model and classification, addresses the issue of extracting effective information from numerous vibration response signals in structural health monitoring.</p></div>\",\"PeriodicalId\":50892,\"journal\":{\"name\":\"Acta Mechanica Solida Sinica\",\"volume\":\"37 3\",\"pages\":\"498 - 518\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mechanica Solida Sinica\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10338-024-00491-7\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mechanica Solida Sinica","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10338-024-00491-7","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Feature Selection Using Tree Model and Classification Through Convolutional Neural Network for Structural Damage Detection
Structural damage detection (SDD) remains highly challenging, due to the difficulty in selecting the optimal damage features from a vast amount of information. In this study, a tree model-based method using decision tree and random forest was employed for feature selection of vibration response signals in SDD. Signal datasets were obtained by numerical experiments and vibration experiments, respectively. Dataset features extracted using this method were input into a convolutional neural network to determine the location of structural damage. Results indicated a 5% to 10% improvement in detection accuracy compared to using original datasets without feature selection, demonstrating the feasibility of this method. The proposed method, based on tree model and classification, addresses the issue of extracting effective information from numerous vibration response signals in structural health monitoring.
期刊介绍:
Acta Mechanica Solida Sinica aims to become the best journal of solid mechanics in China and a worldwide well-known one in the field of mechanics, by providing original, perspective and even breakthrough theories and methods for the research on solid mechanics.
The Journal is devoted to the publication of research papers in English in all fields of solid-state mechanics and its related disciplines in science, technology and engineering, with a balanced coverage on analytical, experimental, numerical and applied investigations. Articles, Short Communications, Discussions on previously published papers, and invitation-based Reviews are published bimonthly. The maximum length of an article is 30 pages, including equations, figures and tables