水波模型周期解的长波长极限

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
J. L. Bona, H. Chen, Y. Hong, M. Panthee, M. Scialom
{"title":"水波模型周期解的长波长极限","authors":"J. L. Bona,&nbsp;H. Chen,&nbsp;Y. Hong,&nbsp;M. Panthee,&nbsp;M. Scialom","doi":"10.1111/sapm.12705","DOIUrl":null,"url":null,"abstract":"<p>The present essay is concerned with providing rigorous justification of a long-standing practice in numerical simulation of partial differential equations. Theory often sets initial-value problems on all of <span></span><math>\n <semantics>\n <mi>R</mi>\n <annotation>${\\mathbb {R}}$</annotation>\n </semantics></math> or <span></span><math>\n <semantics>\n <msup>\n <mi>R</mi>\n <mi>d</mi>\n </msup>\n <annotation>${\\mathbb {R}}^d$</annotation>\n </semantics></math>. If the initial data are localized in space, it has been usual practice to approximate the problem by an associated periodic problem or a homogeneous Dirichlet problem set on a finite interval. While these strategies are commonplace, rigorous justification of the practice is sparse. It is our purpose here to indicate justification of this practice in the concrete context of a surface water wave model. While the theory worked out here is specific to the particular partial differential equation, it will be apparent to the reader that more general results may be derived using the same approach.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The long wavelength limit of periodic solutions of water wave models\",\"authors\":\"J. L. Bona,&nbsp;H. Chen,&nbsp;Y. Hong,&nbsp;M. Panthee,&nbsp;M. Scialom\",\"doi\":\"10.1111/sapm.12705\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The present essay is concerned with providing rigorous justification of a long-standing practice in numerical simulation of partial differential equations. Theory often sets initial-value problems on all of <span></span><math>\\n <semantics>\\n <mi>R</mi>\\n <annotation>${\\\\mathbb {R}}$</annotation>\\n </semantics></math> or <span></span><math>\\n <semantics>\\n <msup>\\n <mi>R</mi>\\n <mi>d</mi>\\n </msup>\\n <annotation>${\\\\mathbb {R}}^d$</annotation>\\n </semantics></math>. If the initial data are localized in space, it has been usual practice to approximate the problem by an associated periodic problem or a homogeneous Dirichlet problem set on a finite interval. While these strategies are commonplace, rigorous justification of the practice is sparse. It is our purpose here to indicate justification of this practice in the concrete context of a surface water wave model. While the theory worked out here is specific to the particular partial differential equation, it will be apparent to the reader that more general results may be derived using the same approach.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/sapm.12705\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/sapm.12705","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

本论文旨在为偏微分方程数值模拟中的一种长期做法提供严谨的理由。如果初始数据在空间上是局部的,通常的做法是用相关的周期性问题或有限区间上的均质 Dirichlet 问题来逼近问题。虽然这些策略司空见惯,但对这种做法的严格论证却很少。我们在这里的目的是在水面波浪模型的具体背景下说明这种做法的合理性。虽然这里的理论是针对特定偏微分方程的,但读者会发现,用同样的方法可以得出更普遍的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The long wavelength limit of periodic solutions of water wave models

The present essay is concerned with providing rigorous justification of a long-standing practice in numerical simulation of partial differential equations. Theory often sets initial-value problems on all of R ${\mathbb {R}}$ or R d ${\mathbb {R}}^d$ . If the initial data are localized in space, it has been usual practice to approximate the problem by an associated periodic problem or a homogeneous Dirichlet problem set on a finite interval. While these strategies are commonplace, rigorous justification of the practice is sparse. It is our purpose here to indicate justification of this practice in the concrete context of a surface water wave model. While the theory worked out here is specific to the particular partial differential equation, it will be apparent to the reader that more general results may be derived using the same approach.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信