{"title":"用 SMA-GFRP-ECC 智能复合材料加固混凝土梁抗弯性能的实验研究","authors":"Hui Qian, Xiangyu Wang, Yujing Wang, Shuqian Duan, Jiecheng Xiong","doi":"10.1177/1045389x241252290","DOIUrl":null,"url":null,"abstract":"The structural performance improvement of concrete members is by far a crucial theoretical issue for engineers, and the development of modern smart and composite materials makes it possible to gradually enhance the durability design of the concrete structure. In this study, six beams of the same size and reinforcement ratio, the proposed composite beam (SMA-GFRP-ECC) and five comparative beams (RC, R-ECC, SS-ECC, GFRP-ECC, SMA-ECC), were designed and tested under low-cycle unidirectional cyclic loading and unloading conditions. The energy dissipation capacity, displacement ductility, residual deformation, and self-repairing performance of each concrete beam were evaluated. Afterward, a concise calculation model for the studied composite beam is deduced and developed based on the existing relevant constitutive models and concrete assumptions. The test results indicate that compared with RC beams, the composite reinforced ECC beams show obvious multi-cracking and smaller crack width during the loading process and have good bending ductility. The innovative SMA-GFRP-ECC beam is capable of a high bearing capacity, ductility, and damage self-repairing. The new proposed beam has more than 80% of the maximum crack width recovery capacity during unloading. Hence, the proposed SMA-GFRP-ECC beam is a rather good first attempt of strengthened beams, combining the advantages of SMA, GFRP, and ECC.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":"18 17","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental investigation on flexural performance of concrete beams strengthened with SMA-GFRP-ECC smart composite materials\",\"authors\":\"Hui Qian, Xiangyu Wang, Yujing Wang, Shuqian Duan, Jiecheng Xiong\",\"doi\":\"10.1177/1045389x241252290\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The structural performance improvement of concrete members is by far a crucial theoretical issue for engineers, and the development of modern smart and composite materials makes it possible to gradually enhance the durability design of the concrete structure. In this study, six beams of the same size and reinforcement ratio, the proposed composite beam (SMA-GFRP-ECC) and five comparative beams (RC, R-ECC, SS-ECC, GFRP-ECC, SMA-ECC), were designed and tested under low-cycle unidirectional cyclic loading and unloading conditions. The energy dissipation capacity, displacement ductility, residual deformation, and self-repairing performance of each concrete beam were evaluated. Afterward, a concise calculation model for the studied composite beam is deduced and developed based on the existing relevant constitutive models and concrete assumptions. The test results indicate that compared with RC beams, the composite reinforced ECC beams show obvious multi-cracking and smaller crack width during the loading process and have good bending ductility. The innovative SMA-GFRP-ECC beam is capable of a high bearing capacity, ductility, and damage self-repairing. The new proposed beam has more than 80% of the maximum crack width recovery capacity during unloading. Hence, the proposed SMA-GFRP-ECC beam is a rather good first attempt of strengthened beams, combining the advantages of SMA, GFRP, and ECC.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":\"18 17\",\"pages\":\"\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1177/1045389x241252290\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1177/1045389x241252290","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Experimental investigation on flexural performance of concrete beams strengthened with SMA-GFRP-ECC smart composite materials
The structural performance improvement of concrete members is by far a crucial theoretical issue for engineers, and the development of modern smart and composite materials makes it possible to gradually enhance the durability design of the concrete structure. In this study, six beams of the same size and reinforcement ratio, the proposed composite beam (SMA-GFRP-ECC) and five comparative beams (RC, R-ECC, SS-ECC, GFRP-ECC, SMA-ECC), were designed and tested under low-cycle unidirectional cyclic loading and unloading conditions. The energy dissipation capacity, displacement ductility, residual deformation, and self-repairing performance of each concrete beam were evaluated. Afterward, a concise calculation model for the studied composite beam is deduced and developed based on the existing relevant constitutive models and concrete assumptions. The test results indicate that compared with RC beams, the composite reinforced ECC beams show obvious multi-cracking and smaller crack width during the loading process and have good bending ductility. The innovative SMA-GFRP-ECC beam is capable of a high bearing capacity, ductility, and damage self-repairing. The new proposed beam has more than 80% of the maximum crack width recovery capacity during unloading. Hence, the proposed SMA-GFRP-ECC beam is a rather good first attempt of strengthened beams, combining the advantages of SMA, GFRP, and ECC.
期刊介绍:
ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications.
The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.