深度学习辅助设计用于高性能中波红外偏振器的双层纳米线光栅

IF 6.4 3区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Junghyun Lee, Junhyuk Oh, Hyung-gun Chi, Minseok Lee, Jehwan Hwang, Seungjin Jeong, Sang-Woo Kang, Haeseong Jee, Hagyoul Bae, Jae-Sang Hyun, Jun Oh Kim, Bongjoong Kim
{"title":"深度学习辅助设计用于高性能中波红外偏振器的双层纳米线光栅","authors":"Junghyun Lee,&nbsp;Junhyuk Oh,&nbsp;Hyung-gun Chi,&nbsp;Minseok Lee,&nbsp;Jehwan Hwang,&nbsp;Seungjin Jeong,&nbsp;Sang-Woo Kang,&nbsp;Haeseong Jee,&nbsp;Hagyoul Bae,&nbsp;Jae-Sang Hyun,&nbsp;Jun Oh Kim,&nbsp;Bongjoong Kim","doi":"10.1002/admt.202302176","DOIUrl":null,"url":null,"abstract":"<p>Optical metamaterials have revolutionized imaging capabilities by manipulating light-matter interactions at the nanoscale beyond the diffraction limit. Bilayer nanowire grating configurations exhibit significant potential as exceptional elements for high-performance polarimetric imaging systems. However, conventional computational approaches for predicting electromagnetic responses are time-consuming and labor-intensive, and thereby, the practical implementation remains challenging through an iterative design, analysis, and fabrication process. Here, a deep learning-based design process is presented utilizing an artificial neural network (ANN) trained on finite element method (FEM) simulations that enables the prediction of bilayer nanowire gratings-based electromagnetic responses. The study validates predictions through nanoimprinted bilayer nanowire gratings, demonstrating the reliability of the ANN's predictions. Furthermore, the research identifies critical geometric parameters significantly influencing transverse magnetic (TM) and transverse electric (TE) transmission. The ANN model effectively tailors design for specific mid-wavelength infrared (MWIR) wavelengths, which may provide a practical tool for rapidly designing and optimizing metamaterial for high-performance polarizers.</p>","PeriodicalId":7292,"journal":{"name":"Advanced Materials Technologies","volume":null,"pages":null},"PeriodicalIF":6.4000,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/admt.202302176","citationCount":"0","resultStr":"{\"title\":\"Deep Learning-Assisted Design of Bilayer Nanowire Gratings for High-Performance MWIR Polarizers\",\"authors\":\"Junghyun Lee,&nbsp;Junhyuk Oh,&nbsp;Hyung-gun Chi,&nbsp;Minseok Lee,&nbsp;Jehwan Hwang,&nbsp;Seungjin Jeong,&nbsp;Sang-Woo Kang,&nbsp;Haeseong Jee,&nbsp;Hagyoul Bae,&nbsp;Jae-Sang Hyun,&nbsp;Jun Oh Kim,&nbsp;Bongjoong Kim\",\"doi\":\"10.1002/admt.202302176\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Optical metamaterials have revolutionized imaging capabilities by manipulating light-matter interactions at the nanoscale beyond the diffraction limit. Bilayer nanowire grating configurations exhibit significant potential as exceptional elements for high-performance polarimetric imaging systems. However, conventional computational approaches for predicting electromagnetic responses are time-consuming and labor-intensive, and thereby, the practical implementation remains challenging through an iterative design, analysis, and fabrication process. Here, a deep learning-based design process is presented utilizing an artificial neural network (ANN) trained on finite element method (FEM) simulations that enables the prediction of bilayer nanowire gratings-based electromagnetic responses. The study validates predictions through nanoimprinted bilayer nanowire gratings, demonstrating the reliability of the ANN's predictions. Furthermore, the research identifies critical geometric parameters significantly influencing transverse magnetic (TM) and transverse electric (TE) transmission. The ANN model effectively tailors design for specific mid-wavelength infrared (MWIR) wavelengths, which may provide a practical tool for rapidly designing and optimizing metamaterial for high-performance polarizers.</p>\",\"PeriodicalId\":7292,\"journal\":{\"name\":\"Advanced Materials Technologies\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2024-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/admt.202302176\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Materials Technologies\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/admt.202302176\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials Technologies","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/admt.202302176","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

光学超材料通过在纳米尺度上操纵光与物质的相互作用,超越了衍射极限,从而彻底改变了成像能力。双层纳米线光栅配置作为高性能偏振成像系统的特殊元件,展现出巨大的潜力。然而,预测电磁响应的传统计算方法既耗时又耗力,因此,通过迭代设计、分析和制造过程实现实际应用仍具有挑战性。本文介绍了一种基于深度学习的设计流程,利用在有限元法(FEM)模拟基础上训练的人工神经网络(ANN)来预测基于双层纳米线光栅的电磁响应。研究通过纳米压印双层纳米线光栅验证了预测结果,证明了人工神经网络预测结果的可靠性。此外,研究还确定了对横向磁(TM)和横向电(TE)传输有重大影响的关键几何参数。ANN模型能有效地针对特定的中波红外(MWIR)波长进行设计,为快速设计和优化高性能偏振器的超材料提供了实用工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Deep Learning-Assisted Design of Bilayer Nanowire Gratings for High-Performance MWIR Polarizers

Deep Learning-Assisted Design of Bilayer Nanowire Gratings for High-Performance MWIR Polarizers

Deep Learning-Assisted Design of Bilayer Nanowire Gratings for High-Performance MWIR Polarizers

Optical metamaterials have revolutionized imaging capabilities by manipulating light-matter interactions at the nanoscale beyond the diffraction limit. Bilayer nanowire grating configurations exhibit significant potential as exceptional elements for high-performance polarimetric imaging systems. However, conventional computational approaches for predicting electromagnetic responses are time-consuming and labor-intensive, and thereby, the practical implementation remains challenging through an iterative design, analysis, and fabrication process. Here, a deep learning-based design process is presented utilizing an artificial neural network (ANN) trained on finite element method (FEM) simulations that enables the prediction of bilayer nanowire gratings-based electromagnetic responses. The study validates predictions through nanoimprinted bilayer nanowire gratings, demonstrating the reliability of the ANN's predictions. Furthermore, the research identifies critical geometric parameters significantly influencing transverse magnetic (TM) and transverse electric (TE) transmission. The ANN model effectively tailors design for specific mid-wavelength infrared (MWIR) wavelengths, which may provide a practical tool for rapidly designing and optimizing metamaterial for high-performance polarizers.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Materials Technologies
Advanced Materials Technologies Materials Science-General Materials Science
CiteScore
10.20
自引率
4.40%
发文量
566
期刊介绍: Advanced Materials Technologies Advanced Materials Technologies is the new home for all technology-related materials applications research, with particular focus on advanced device design, fabrication and integration, as well as new technologies based on novel materials. It bridges the gap between fundamental laboratory research and industry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信