Zhuo Li, Jiacheng Gong, Shan Lu, Xingjun Li, Xiaobo Gu, Jin Xu, Jawairia Umar Khan, Dayong Jin, Xueyuan Chen
{"title":"光热镧系纳米材料:从基本原理到治疗应用","authors":"Zhuo Li, Jiacheng Gong, Shan Lu, Xingjun Li, Xiaobo Gu, Jin Xu, Jawairia Umar Khan, Dayong Jin, Xueyuan Chen","doi":"10.1002/bmm2.12088","DOIUrl":null,"url":null,"abstract":"<p>Photothermal lanthanide nanomaterials with unique photophysical properties have been innovatively explored for diagnostics and non-invasive therapies, and hold great promise for precision theranostics. In this review, we start from the basic principles of excited-state dynamics and provide a thorough comprehension of the main pathways for photothermal conversion in lanthanide nanocrystals. Aspects influencing the photothermal effect such as lanthanide-doping concentration, particle size, and crystal structure have been fully discussed. Hybrid strategies for the design of efficient lanthanide-based photothermal agents, including dye sensitization to break the absorption limit and semiconductor combination to add cross-relaxation pathways, have also been summarized. Furthermore, we highlight the cutting-edge applications of photothermal lanthanide nanoplatforms with optical diagnosis and temperature feedback in photothermia-associated theranostics. Lastly, the current challenges and future efforts for clinical applications are proposed. This review is expected to offer a better understanding of photothermal mechanisms and inspire efforts for designing versatile lanthanide theranostic nanoplatforms.</p>","PeriodicalId":100191,"journal":{"name":"BMEMat","volume":"2 4","pages":""},"PeriodicalIF":15.5000,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bmm2.12088","citationCount":"0","resultStr":"{\"title\":\"Photothermal lanthanide nanomaterials: From fundamentals to theranostic applications\",\"authors\":\"Zhuo Li, Jiacheng Gong, Shan Lu, Xingjun Li, Xiaobo Gu, Jin Xu, Jawairia Umar Khan, Dayong Jin, Xueyuan Chen\",\"doi\":\"10.1002/bmm2.12088\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Photothermal lanthanide nanomaterials with unique photophysical properties have been innovatively explored for diagnostics and non-invasive therapies, and hold great promise for precision theranostics. In this review, we start from the basic principles of excited-state dynamics and provide a thorough comprehension of the main pathways for photothermal conversion in lanthanide nanocrystals. Aspects influencing the photothermal effect such as lanthanide-doping concentration, particle size, and crystal structure have been fully discussed. Hybrid strategies for the design of efficient lanthanide-based photothermal agents, including dye sensitization to break the absorption limit and semiconductor combination to add cross-relaxation pathways, have also been summarized. Furthermore, we highlight the cutting-edge applications of photothermal lanthanide nanoplatforms with optical diagnosis and temperature feedback in photothermia-associated theranostics. Lastly, the current challenges and future efforts for clinical applications are proposed. This review is expected to offer a better understanding of photothermal mechanisms and inspire efforts for designing versatile lanthanide theranostic nanoplatforms.</p>\",\"PeriodicalId\":100191,\"journal\":{\"name\":\"BMEMat\",\"volume\":\"2 4\",\"pages\":\"\"},\"PeriodicalIF\":15.5000,\"publicationDate\":\"2024-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bmm2.12088\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMEMat\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/bmm2.12088\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMEMat","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bmm2.12088","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Photothermal lanthanide nanomaterials: From fundamentals to theranostic applications
Photothermal lanthanide nanomaterials with unique photophysical properties have been innovatively explored for diagnostics and non-invasive therapies, and hold great promise for precision theranostics. In this review, we start from the basic principles of excited-state dynamics and provide a thorough comprehension of the main pathways for photothermal conversion in lanthanide nanocrystals. Aspects influencing the photothermal effect such as lanthanide-doping concentration, particle size, and crystal structure have been fully discussed. Hybrid strategies for the design of efficient lanthanide-based photothermal agents, including dye sensitization to break the absorption limit and semiconductor combination to add cross-relaxation pathways, have also been summarized. Furthermore, we highlight the cutting-edge applications of photothermal lanthanide nanoplatforms with optical diagnosis and temperature feedback in photothermia-associated theranostics. Lastly, the current challenges and future efforts for clinical applications are proposed. This review is expected to offer a better understanding of photothermal mechanisms and inspire efforts for designing versatile lanthanide theranostic nanoplatforms.