{"title":"加拿大不列颠哥伦比亚省高山森林生态系统变化的气候、野火和火山灰驱动因素","authors":"R. Hebda, Kendrick J Brown","doi":"10.1139/cjfr-2023-0180","DOIUrl":null,"url":null,"abstract":"Northwest North America has unique high elevation Picea-Abies forests and parkland classified in British Columbia as the Engelmann Spruce-Subalpine-fir (ESSF) Biogeoclimatic zone. These ecosystems occur on a topographically and climatically complex landscape, juxtaposed with diverse vegetation types including alpine tundra, inland rain forest, dry conifer forest, and grasslands. Spatio-temporal ecosystem disturbance is varied, driven by factors such as climate variation, wildfire, volcanic eruptions, and insect herbivory. A pollen and charcoal record derived from a lake sediment core from the ESSF reveals a unique late-glacial to modern vegetation history progressing from alpine steppe through dry open conifer forest to moist spruce-fir ecosystems, the latter arising only 4600 years ago; late by comparison to other ESSF sites in the region. Repeated disturbance in the mid Holocene by wildfire coupled with volcanic ash deposition and increased climatic variation resulted in recurring Pinus contorta-dominated seral forest stands before cooling and moistening in the late Holocene led to stable Picea-Abies forest. With rapid climate change, changing disturbance regimes, and timber harvest, the management of dry ESSF forests needs to consider that this forest-type could transform into parkland or open seral pine stands, with a high frequency disturbance regime.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":"41 8","pages":""},"PeriodicalIF":16.4000,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Climate, wildfire, and volcanic ash drivers of ecosystem change in high mountain forests, British Columbia, Canada\",\"authors\":\"R. Hebda, Kendrick J Brown\",\"doi\":\"10.1139/cjfr-2023-0180\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Northwest North America has unique high elevation Picea-Abies forests and parkland classified in British Columbia as the Engelmann Spruce-Subalpine-fir (ESSF) Biogeoclimatic zone. These ecosystems occur on a topographically and climatically complex landscape, juxtaposed with diverse vegetation types including alpine tundra, inland rain forest, dry conifer forest, and grasslands. Spatio-temporal ecosystem disturbance is varied, driven by factors such as climate variation, wildfire, volcanic eruptions, and insect herbivory. A pollen and charcoal record derived from a lake sediment core from the ESSF reveals a unique late-glacial to modern vegetation history progressing from alpine steppe through dry open conifer forest to moist spruce-fir ecosystems, the latter arising only 4600 years ago; late by comparison to other ESSF sites in the region. Repeated disturbance in the mid Holocene by wildfire coupled with volcanic ash deposition and increased climatic variation resulted in recurring Pinus contorta-dominated seral forest stands before cooling and moistening in the late Holocene led to stable Picea-Abies forest. With rapid climate change, changing disturbance regimes, and timber harvest, the management of dry ESSF forests needs to consider that this forest-type could transform into parkland or open seral pine stands, with a high frequency disturbance regime.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":\"41 8\",\"pages\":\"\"},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1139/cjfr-2023-0180\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1139/cjfr-2023-0180","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Climate, wildfire, and volcanic ash drivers of ecosystem change in high mountain forests, British Columbia, Canada
Northwest North America has unique high elevation Picea-Abies forests and parkland classified in British Columbia as the Engelmann Spruce-Subalpine-fir (ESSF) Biogeoclimatic zone. These ecosystems occur on a topographically and climatically complex landscape, juxtaposed with diverse vegetation types including alpine tundra, inland rain forest, dry conifer forest, and grasslands. Spatio-temporal ecosystem disturbance is varied, driven by factors such as climate variation, wildfire, volcanic eruptions, and insect herbivory. A pollen and charcoal record derived from a lake sediment core from the ESSF reveals a unique late-glacial to modern vegetation history progressing from alpine steppe through dry open conifer forest to moist spruce-fir ecosystems, the latter arising only 4600 years ago; late by comparison to other ESSF sites in the region. Repeated disturbance in the mid Holocene by wildfire coupled with volcanic ash deposition and increased climatic variation resulted in recurring Pinus contorta-dominated seral forest stands before cooling and moistening in the late Holocene led to stable Picea-Abies forest. With rapid climate change, changing disturbance regimes, and timber harvest, the management of dry ESSF forests needs to consider that this forest-type could transform into parkland or open seral pine stands, with a high frequency disturbance regime.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.