几何框架下双翼无人机的非线性姿态和高度轨迹跟踪控制

IF 1.4 Q4 ROBOTICS
Vijay Reddy Vundela, Vijay Muralidharan
{"title":"几何框架下双翼无人机的非线性姿态和高度轨迹跟踪控制","authors":"Vijay Reddy Vundela, Vijay Muralidharan","doi":"10.1155/2024/5552493","DOIUrl":null,"url":null,"abstract":"In this paper, we deal with a Bicopter drone that has two thrusters and two tilting servos. Both the position and attitude dynamics of Bicopter are globally expressed on the Special Euclidean group SE3. A simple control allocation method is proposed to map between the control wrench and actuator inputs for the Bicopter. A geometric nonlinear attitude and altitude tracking controller is developed for the Bicopter and the asymptotic stability analysis is performed using the Lyapunov method for the closed-loop nonlinear system. The performance of the proposed altitude and attitude stabilization controller is validated through experimental hardware developed in-house. The attitude controller performance is validated through simulations and shown to be comparable against an linear matrix inequality-based control law.","PeriodicalId":51834,"journal":{"name":"Journal of Robotics","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nonlinear Attitude and Altitude Trajectory Tracking Control of a Bicopter UAV in Geometric Framework\",\"authors\":\"Vijay Reddy Vundela, Vijay Muralidharan\",\"doi\":\"10.1155/2024/5552493\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we deal with a Bicopter drone that has two thrusters and two tilting servos. Both the position and attitude dynamics of Bicopter are globally expressed on the Special Euclidean group SE3. A simple control allocation method is proposed to map between the control wrench and actuator inputs for the Bicopter. A geometric nonlinear attitude and altitude tracking controller is developed for the Bicopter and the asymptotic stability analysis is performed using the Lyapunov method for the closed-loop nonlinear system. The performance of the proposed altitude and attitude stabilization controller is validated through experimental hardware developed in-house. The attitude controller performance is validated through simulations and shown to be comparable against an linear matrix inequality-based control law.\",\"PeriodicalId\":51834,\"journal\":{\"name\":\"Journal of Robotics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Robotics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2024/5552493\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Robotics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2024/5552493","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

摘要

本文讨论的是一架拥有两个推进器和两个倾斜伺服器的双旋翼无人机。双旋翼无人机的位置和姿态动态均在特殊欧几里得群 SE3 上进行全局表达。我们提出了一种简单的控制分配方法来映射 Bicopter 的控制扳手和执行器输入。为直升机开发了几何非线性姿态和高度跟踪控制器,并使用 Lyapunov 方法对闭环非线性系统进行了渐近稳定性分析。通过内部开发的实验硬件验证了所提出的高度和姿态稳定控制器的性能。通过模拟验证了姿态控制仪的性能,结果表明它与基于线性矩阵不等式的控制法具有可比性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nonlinear Attitude and Altitude Trajectory Tracking Control of a Bicopter UAV in Geometric Framework
In this paper, we deal with a Bicopter drone that has two thrusters and two tilting servos. Both the position and attitude dynamics of Bicopter are globally expressed on the Special Euclidean group SE3. A simple control allocation method is proposed to map between the control wrench and actuator inputs for the Bicopter. A geometric nonlinear attitude and altitude tracking controller is developed for the Bicopter and the asymptotic stability analysis is performed using the Lyapunov method for the closed-loop nonlinear system. The performance of the proposed altitude and attitude stabilization controller is validated through experimental hardware developed in-house. The attitude controller performance is validated through simulations and shown to be comparable against an linear matrix inequality-based control law.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.70
自引率
5.60%
发文量
77
审稿时长
22 weeks
期刊介绍: Journal of Robotics publishes papers on all aspects automated mechanical devices, from their design and fabrication, to their testing and practical implementation. The journal welcomes submissions from the associated fields of materials science, electrical and computer engineering, and machine learning and artificial intelligence, that contribute towards advances in the technology and understanding of robotic systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信