通过表面电荷调制实现摇椅式电容去离子法中碳质电极的超高盐吸附能力

IF 8.9 2区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL
Qifeng Wang, Mingyan Zhao, Qinghao Wu, Shujuan Meng, Xiaohu Li and Dawei Liang*, 
{"title":"通过表面电荷调制实现摇椅式电容去离子法中碳质电极的超高盐吸附能力","authors":"Qifeng Wang,&nbsp;Mingyan Zhao,&nbsp;Qinghao Wu,&nbsp;Shujuan Meng,&nbsp;Xiaohu Li and Dawei Liang*,&nbsp;","doi":"10.1021/acs.estlett.4c00219","DOIUrl":null,"url":null,"abstract":"<p >Addressing the challenges of ion adsorption capacity and electrode stability in capacitive deionization (CDI), this research introduces a pioneering anion exchange membrane (AEM)-based rocking chair CDI (RCDI) system equipped with activated carbon electrodes. Designed to counteract co-ion effects, this AEM-RCDI system significantly enhances ion-selective adsorption through improved electrode surface charge dynamics. This study also elucidates how these dynamics influence electrode potential distribution, the potential of zero charge, and the mechanism facilitating differential adsorption of ions, bridging fundamental electrochemical insight with practical improvement in desalination performance. Our investigation reveals that the oxidation of the carbon electrode, both during desalination and through targeted preoxidation, significantly boosts desalination efficacy and electrode stability. Especially, preoxidation increases cation adsorption, achieving an impressive desalination capacity of 87.3 mg g<sup>–1</sup>, rate of 12 mg g<sup>–1</sup> min<sup>–1</sup>, and charge efficiency of 88.6%, with remarkable stability over 240 desalination cycles. This study not only unveils key insights into the deionization mechanisms and properties of carbonaceous electrodes in RCDI but also sets a new benchmark for commercial CDI development.</p>","PeriodicalId":37,"journal":{"name":"Environmental Science & Technology Letters Environ.","volume":null,"pages":null},"PeriodicalIF":8.9000,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ultrahigh Salt Adsorption Capacity of Carbonaceous Electrode in a Rocking-Chair Capacitive Deionization through Surface Charge Modulation\",\"authors\":\"Qifeng Wang,&nbsp;Mingyan Zhao,&nbsp;Qinghao Wu,&nbsp;Shujuan Meng,&nbsp;Xiaohu Li and Dawei Liang*,&nbsp;\",\"doi\":\"10.1021/acs.estlett.4c00219\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Addressing the challenges of ion adsorption capacity and electrode stability in capacitive deionization (CDI), this research introduces a pioneering anion exchange membrane (AEM)-based rocking chair CDI (RCDI) system equipped with activated carbon electrodes. Designed to counteract co-ion effects, this AEM-RCDI system significantly enhances ion-selective adsorption through improved electrode surface charge dynamics. This study also elucidates how these dynamics influence electrode potential distribution, the potential of zero charge, and the mechanism facilitating differential adsorption of ions, bridging fundamental electrochemical insight with practical improvement in desalination performance. Our investigation reveals that the oxidation of the carbon electrode, both during desalination and through targeted preoxidation, significantly boosts desalination efficacy and electrode stability. Especially, preoxidation increases cation adsorption, achieving an impressive desalination capacity of 87.3 mg g<sup>–1</sup>, rate of 12 mg g<sup>–1</sup> min<sup>–1</sup>, and charge efficiency of 88.6%, with remarkable stability over 240 desalination cycles. This study not only unveils key insights into the deionization mechanisms and properties of carbonaceous electrodes in RCDI but also sets a new benchmark for commercial CDI development.</p>\",\"PeriodicalId\":37,\"journal\":{\"name\":\"Environmental Science & Technology Letters Environ.\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.9000,\"publicationDate\":\"2024-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Science & Technology Letters Environ.\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.estlett.4c00219\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science & Technology Letters Environ.","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.estlett.4c00219","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

为了解决电容式去离子(CDI)中离子吸附容量和电极稳定性的难题,本研究率先推出了一种基于阴离子交换膜(AEM)的摇椅式电容式去离子(RCDI)系统,该系统配备了活性炭电极。这种 AEM-RCDI 系统旨在抵消共离子效应,通过改善电极表面电荷动态,显著提高离子选择性吸附能力。这项研究还阐明了这些动态如何影响电极电位分布、零电荷电位以及促进离子差异吸附的机制,从而将基本的电化学见解与海水淡化性能的实际改善结合起来。我们的研究发现,在海水淡化过程中以及通过有针对性的预氧化作用对碳电极进行氧化,可显著提高海水淡化效果和电极稳定性。特别是,预氧化增加了阳离子吸附,使脱盐能力达到惊人的 87.3 mg g-1,脱盐率达到 12 mg g-1 min-1,充电效率达到 88.6%,并且在 240 次脱盐循环中保持了出色的稳定性。这项研究不仅揭示了碳质电极在 RCDI 中的去离子机理和特性,还为商业 CDI 的开发树立了新的标杆。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Ultrahigh Salt Adsorption Capacity of Carbonaceous Electrode in a Rocking-Chair Capacitive Deionization through Surface Charge Modulation

Ultrahigh Salt Adsorption Capacity of Carbonaceous Electrode in a Rocking-Chair Capacitive Deionization through Surface Charge Modulation

Ultrahigh Salt Adsorption Capacity of Carbonaceous Electrode in a Rocking-Chair Capacitive Deionization through Surface Charge Modulation

Addressing the challenges of ion adsorption capacity and electrode stability in capacitive deionization (CDI), this research introduces a pioneering anion exchange membrane (AEM)-based rocking chair CDI (RCDI) system equipped with activated carbon electrodes. Designed to counteract co-ion effects, this AEM-RCDI system significantly enhances ion-selective adsorption through improved electrode surface charge dynamics. This study also elucidates how these dynamics influence electrode potential distribution, the potential of zero charge, and the mechanism facilitating differential adsorption of ions, bridging fundamental electrochemical insight with practical improvement in desalination performance. Our investigation reveals that the oxidation of the carbon electrode, both during desalination and through targeted preoxidation, significantly boosts desalination efficacy and electrode stability. Especially, preoxidation increases cation adsorption, achieving an impressive desalination capacity of 87.3 mg g–1, rate of 12 mg g–1 min–1, and charge efficiency of 88.6%, with remarkable stability over 240 desalination cycles. This study not only unveils key insights into the deionization mechanisms and properties of carbonaceous electrodes in RCDI but also sets a new benchmark for commercial CDI development.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Environmental Science & Technology Letters Environ.
Environmental Science & Technology Letters Environ. ENGINEERING, ENVIRONMENTALENVIRONMENTAL SC-ENVIRONMENTAL SCIENCES
CiteScore
17.90
自引率
3.70%
发文量
163
期刊介绍: Environmental Science & Technology Letters serves as an international forum for brief communications on experimental or theoretical results of exceptional timeliness in all aspects of environmental science, both pure and applied. Published as soon as accepted, these communications are summarized in monthly issues. Additionally, the journal features short reviews on emerging topics in environmental science and technology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信