玻璃陶瓷超声振动辅助研磨对表面/次表面损伤机理的影响研究

IF 1.7 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Wenchao Zhang, Enming Cui, Cheng Wang, Baoquan Zhang, Jiwei Jin, Pengfei Zhang, Wending Wu, Mingwei Wang
{"title":"玻璃陶瓷超声振动辅助研磨对表面/次表面损伤机理的影响研究","authors":"Wenchao Zhang, Enming Cui, Cheng Wang, Baoquan Zhang, Jiwei Jin, Pengfei Zhang, Wending Wu, Mingwei Wang","doi":"10.1108/mmms-01-2024-0024","DOIUrl":null,"url":null,"abstract":"PurposeAn investigation was conducted into the impact of various process parameters on the surface and subsurface quality of glass-ceramic materials, as well as the mechanism of material removal and crack formation, through the use of ultrasonic-assisted grinding.Design/methodology/approachA mathematical model of crack propagation in ultrasonic-assisted grinding was established, and the mechanism of crack formation was described through the model. A series of simulations and experiments were conducted to investigate the impact of process parameters on crack depth, surface roughness, and surface topography during ultrasonic-assisted surface and axial grinding. Additionally, the mechanism of crack formation was explored.FindingsDuring ultrasonic-assisted grinding, the average grinding forces are between 0.4–1.0 N, which is much smaller than that of ordinary grinding (1.0–3.5 N). In surface grinding, the maximum surface stresses between the workpiece and the tool gradually decrease with the tool speed. The surface stresses of the workpiece increase with the grinding depth, and the depth of subsurface cracks increases with the grinding depth. With the increase of the axial grinding speed, the subsurface damage depth increases. The roughness increases from 0.780um/1.433um.Originality/valueA mathematical model of crack propagation in ultrasonic-assisted grinding was established, and the mechanism of crack formation was described through the model. The deformation involved in the grinding process is large, and the FEM-SPH modeling method is used to solve the problem that the results of the traditional finite element method are not convergent and the calculation efficiency is low.","PeriodicalId":46760,"journal":{"name":"Multidiscipline Modeling in Materials and Structures","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study on the impact of ultrasonic vibration-assisted grinding of glass-ceramics on surface/subsurface damage mechanism\",\"authors\":\"Wenchao Zhang, Enming Cui, Cheng Wang, Baoquan Zhang, Jiwei Jin, Pengfei Zhang, Wending Wu, Mingwei Wang\",\"doi\":\"10.1108/mmms-01-2024-0024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"PurposeAn investigation was conducted into the impact of various process parameters on the surface and subsurface quality of glass-ceramic materials, as well as the mechanism of material removal and crack formation, through the use of ultrasonic-assisted grinding.Design/methodology/approachA mathematical model of crack propagation in ultrasonic-assisted grinding was established, and the mechanism of crack formation was described through the model. A series of simulations and experiments were conducted to investigate the impact of process parameters on crack depth, surface roughness, and surface topography during ultrasonic-assisted surface and axial grinding. Additionally, the mechanism of crack formation was explored.FindingsDuring ultrasonic-assisted grinding, the average grinding forces are between 0.4–1.0 N, which is much smaller than that of ordinary grinding (1.0–3.5 N). In surface grinding, the maximum surface stresses between the workpiece and the tool gradually decrease with the tool speed. The surface stresses of the workpiece increase with the grinding depth, and the depth of subsurface cracks increases with the grinding depth. With the increase of the axial grinding speed, the subsurface damage depth increases. The roughness increases from 0.780um/1.433um.Originality/valueA mathematical model of crack propagation in ultrasonic-assisted grinding was established, and the mechanism of crack formation was described through the model. The deformation involved in the grinding process is large, and the FEM-SPH modeling method is used to solve the problem that the results of the traditional finite element method are not convergent and the calculation efficiency is low.\",\"PeriodicalId\":46760,\"journal\":{\"name\":\"Multidiscipline Modeling in Materials and Structures\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Multidiscipline Modeling in Materials and Structures\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1108/mmms-01-2024-0024\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Multidiscipline Modeling in Materials and Structures","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1108/mmms-01-2024-0024","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

设计/方法/途径 建立了超声波辅助磨削中裂纹扩展的数学模型,并通过该模型描述了裂纹形成的机理。通过一系列模拟和实验研究了超声波辅助平面和轴向磨削过程中工艺参数对裂纹深度、表面粗糙度和表面形貌的影响。研究结果在超声波辅助磨削过程中,平均磨削力在 0.4-1.0 N 之间,远小于普通磨削(1.0-3.5 N)。在平面磨削中,工件与刀具之间的最大表面应力随着刀具速度的增加而逐渐减小。工件的表面应力随磨削深度的增加而增加,表面下裂纹的深度随磨削深度的增加而增加。随着轴向磨削速度的增加,表面下的损伤深度也随之增加。原创性/价值 建立了超声波辅助磨削中裂纹扩展的数学模型,并通过该模型描述了裂纹形成的机理。磨削过程中涉及的变形量较大,采用 FEM-SPH 建模方法解决了传统有限元方法结果不收敛、计算效率低的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Study on the impact of ultrasonic vibration-assisted grinding of glass-ceramics on surface/subsurface damage mechanism
PurposeAn investigation was conducted into the impact of various process parameters on the surface and subsurface quality of glass-ceramic materials, as well as the mechanism of material removal and crack formation, through the use of ultrasonic-assisted grinding.Design/methodology/approachA mathematical model of crack propagation in ultrasonic-assisted grinding was established, and the mechanism of crack formation was described through the model. A series of simulations and experiments were conducted to investigate the impact of process parameters on crack depth, surface roughness, and surface topography during ultrasonic-assisted surface and axial grinding. Additionally, the mechanism of crack formation was explored.FindingsDuring ultrasonic-assisted grinding, the average grinding forces are between 0.4–1.0 N, which is much smaller than that of ordinary grinding (1.0–3.5 N). In surface grinding, the maximum surface stresses between the workpiece and the tool gradually decrease with the tool speed. The surface stresses of the workpiece increase with the grinding depth, and the depth of subsurface cracks increases with the grinding depth. With the increase of the axial grinding speed, the subsurface damage depth increases. The roughness increases from 0.780um/1.433um.Originality/valueA mathematical model of crack propagation in ultrasonic-assisted grinding was established, and the mechanism of crack formation was described through the model. The deformation involved in the grinding process is large, and the FEM-SPH modeling method is used to solve the problem that the results of the traditional finite element method are not convergent and the calculation efficiency is low.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.70
自引率
5.00%
发文量
60
期刊介绍: Multidiscipline Modeling in Materials and Structures is published by Emerald Group Publishing Limited from 2010
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信