{"title":"基于光子计数的泵探针技术,以无锁定检测方式定量表征荧光","authors":"Khalil Ur Rehman, Subir Das, Fu-Jen Kao","doi":"10.1088/1612-202x/ad4854","DOIUrl":null,"url":null,"abstract":"\n <jats:p>The stimulated emission (SE) signal in pump-probe experiment is conventionally measured with lock-in detection to differentiate the weak signals from the relatively large background of spontaneous emission and probe beam. Therefore, direct characterization of signal strength are often major limiting factors in terms of noise, speed, and data acquisition. In contrast, photon counting allows direct quantification of signal strength, while synchronized pump-probe pulse enables precise timing and the separation of signals accordingly. Herein, the SE based pump-probe method is combined with time-correlated single-photon counting to investigate the ultrafast photochemical parameters, digitally and quantitatively. As a proof-of-concept, our technique is applied to investigate, fluorescence lifetime <jats:inline-formula>\n <jats:tex-math/>\n <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\">\n <mml:mrow>\n <mml:mrow>\n <mml:mo>(</mml:mo>\n <mml:mi>τ</mml:mi>\n <mml:mo>)</mml:mo>\n </mml:mrow>\n <mml:mo>∼</mml:mo>\n <mml:mn>3.71</mml:mn>\n <mml:mstyle scriptlevel=\"0\"/>\n <mml:mrow>\n <mml:mtext>ns</mml:mtext>\n </mml:mrow>\n </mml:mrow>\n </mml:math>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"lplad4854ieqn1.gif\" xlink:type=\"simple\"/>\n </jats:inline-formula>, optical absorption cross-section <jats:inline-formula>\n <jats:tex-math/>\n <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\">\n <mml:mrow>\n <mml:mrow>\n <mml:mo>(</mml:mo>\n <mml:mrow>\n <mml:mrow>\n <mml:msub>\n <mml:mi>σ</mml:mi>\n <mml:mrow>\n <mml:mrow>\n <mml:mtext>abs</mml:mtext>\n </mml:mrow>\n </mml:mrow>\n </mml:msub>\n </mml:mrow>\n </mml:mrow>\n <mml:mo>)</mml:mo>\n </mml:mrow>\n <mml:mo>∼</mml:mo>\n <mml:mn>1.23</mml:mn>\n <mml:mo>×</mml:mo>\n <mml:mrow>\n <mml:msup>\n <mml:mn>10</mml:mn>\n <mml:mrow>\n <mml:mo>−</mml:mo>\n <mml:mn>16</mml:mn>\n </mml:mrow>\n </mml:msup>\n </mml:mrow>\n <mml:mrow>\n <mml:mtext>c</mml:mtext>\n </mml:mrow>\n <mml:mrow>\n <mml:msup>\n <mml:mrow>\n <mml:mtext>m</mml:mtext>\n </mml:mrow>\n <mml:mn>2</mml:mn>\n </mml:msup>\n </mml:mrow>\n </mml:mrow>\n </mml:math>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"lplad4854ieqn2.gif\" xlink:type=\"simple\"/>\n </jats:inline-formula>, and the SE cross-section <jats:inline-formula>\n <jats:tex-math/>\n <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\">\n <mml:mrow>\n <mml:mrow>\n <mml:mo>(</mml:mo>\n <mml:mrow>\n <mml:mrow>\n <mml:msub>\n <mml:mi>σ</mml:mi>\n <mml:mrow>\n <mml:mrow>\n <mml:mtext>SE</mml:mtext>\n </mml:mrow>\n </mml:mrow>\n </mml:msub>\n </mml:mrow>\n </mml:mrow>\n <mml:mo>)</mml:mo>\n </mml:mrow>\n <mml:mo>∼</mml:mo>\n <mml:mn>2.22</mml:mn>\n <mml:mo>×</mml:mo>\n <mml:mrow>\n <mml:msup>\n <mml:mn>10</mml:mn>\n <mml:mrow>\n <mml:mo>−</mml:mo>\n <mml:mn>17</mml:mn>\n </mml:mrow>\n </mml:msup>\n </mml:mrow>\n <mml:mrow>\n <mml:mtext>c</mml:mtext>\n </mml:mrow>\n <mml:mrow>\n <mml:msup>\n <mml:mrow>\n <mml:mtext>m</mml:mtext>\n </mml:mrow>\n <mml:mn>2</mml:mn>\n </mml:msup>\n </mml:mrow>\n </mml:mrow>\n </mml:math>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"lplad4854ieqn3.gif\" xlink:type=\"simple\"/>\n </jats:inline-formula>, of a fluorescent dye (ATTO 647N) quantitatively. The experimental results are also compared with theoretical photon statistics to further justify the advantages including experimental and statistical critical molecular dynamics parameters extraction with excellent high accuracy.</jats:p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Photon counting based pump-probe technique for quantitative characterization of fluorescence in a lock-in free detection manner\",\"authors\":\"Khalil Ur Rehman, Subir Das, Fu-Jen Kao\",\"doi\":\"10.1088/1612-202x/ad4854\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n <jats:p>The stimulated emission (SE) signal in pump-probe experiment is conventionally measured with lock-in detection to differentiate the weak signals from the relatively large background of spontaneous emission and probe beam. Therefore, direct characterization of signal strength are often major limiting factors in terms of noise, speed, and data acquisition. In contrast, photon counting allows direct quantification of signal strength, while synchronized pump-probe pulse enables precise timing and the separation of signals accordingly. Herein, the SE based pump-probe method is combined with time-correlated single-photon counting to investigate the ultrafast photochemical parameters, digitally and quantitatively. As a proof-of-concept, our technique is applied to investigate, fluorescence lifetime <jats:inline-formula>\\n <jats:tex-math/>\\n <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" overflow=\\\"scroll\\\">\\n <mml:mrow>\\n <mml:mrow>\\n <mml:mo>(</mml:mo>\\n <mml:mi>τ</mml:mi>\\n <mml:mo>)</mml:mo>\\n </mml:mrow>\\n <mml:mo>∼</mml:mo>\\n <mml:mn>3.71</mml:mn>\\n <mml:mstyle scriptlevel=\\\"0\\\"/>\\n <mml:mrow>\\n <mml:mtext>ns</mml:mtext>\\n </mml:mrow>\\n </mml:mrow>\\n </mml:math>\\n <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"lplad4854ieqn1.gif\\\" xlink:type=\\\"simple\\\"/>\\n </jats:inline-formula>, optical absorption cross-section <jats:inline-formula>\\n <jats:tex-math/>\\n <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" overflow=\\\"scroll\\\">\\n <mml:mrow>\\n <mml:mrow>\\n <mml:mo>(</mml:mo>\\n <mml:mrow>\\n <mml:mrow>\\n <mml:msub>\\n <mml:mi>σ</mml:mi>\\n <mml:mrow>\\n <mml:mrow>\\n <mml:mtext>abs</mml:mtext>\\n </mml:mrow>\\n </mml:mrow>\\n </mml:msub>\\n </mml:mrow>\\n </mml:mrow>\\n <mml:mo>)</mml:mo>\\n </mml:mrow>\\n <mml:mo>∼</mml:mo>\\n <mml:mn>1.23</mml:mn>\\n <mml:mo>×</mml:mo>\\n <mml:mrow>\\n <mml:msup>\\n <mml:mn>10</mml:mn>\\n <mml:mrow>\\n <mml:mo>−</mml:mo>\\n <mml:mn>16</mml:mn>\\n </mml:mrow>\\n </mml:msup>\\n </mml:mrow>\\n <mml:mrow>\\n <mml:mtext>c</mml:mtext>\\n </mml:mrow>\\n <mml:mrow>\\n <mml:msup>\\n <mml:mrow>\\n <mml:mtext>m</mml:mtext>\\n </mml:mrow>\\n <mml:mn>2</mml:mn>\\n </mml:msup>\\n </mml:mrow>\\n </mml:mrow>\\n </mml:math>\\n <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"lplad4854ieqn2.gif\\\" xlink:type=\\\"simple\\\"/>\\n </jats:inline-formula>, and the SE cross-section <jats:inline-formula>\\n <jats:tex-math/>\\n <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" overflow=\\\"scroll\\\">\\n <mml:mrow>\\n <mml:mrow>\\n <mml:mo>(</mml:mo>\\n <mml:mrow>\\n <mml:mrow>\\n <mml:msub>\\n <mml:mi>σ</mml:mi>\\n <mml:mrow>\\n <mml:mrow>\\n <mml:mtext>SE</mml:mtext>\\n </mml:mrow>\\n </mml:mrow>\\n </mml:msub>\\n </mml:mrow>\\n </mml:mrow>\\n <mml:mo>)</mml:mo>\\n </mml:mrow>\\n <mml:mo>∼</mml:mo>\\n <mml:mn>2.22</mml:mn>\\n <mml:mo>×</mml:mo>\\n <mml:mrow>\\n <mml:msup>\\n <mml:mn>10</mml:mn>\\n <mml:mrow>\\n <mml:mo>−</mml:mo>\\n <mml:mn>17</mml:mn>\\n </mml:mrow>\\n </mml:msup>\\n </mml:mrow>\\n <mml:mrow>\\n <mml:mtext>c</mml:mtext>\\n </mml:mrow>\\n <mml:mrow>\\n <mml:msup>\\n <mml:mrow>\\n <mml:mtext>m</mml:mtext>\\n </mml:mrow>\\n <mml:mn>2</mml:mn>\\n </mml:msup>\\n </mml:mrow>\\n </mml:mrow>\\n </mml:math>\\n <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"lplad4854ieqn3.gif\\\" xlink:type=\\\"simple\\\"/>\\n </jats:inline-formula>, of a fluorescent dye (ATTO 647N) quantitatively. The experimental results are also compared with theoretical photon statistics to further justify the advantages including experimental and statistical critical molecular dynamics parameters extraction with excellent high accuracy.</jats:p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1612-202x/ad4854\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1612-202x/ad4854","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
泵-探针实验中的受激发射(SE)信号传统上是通过锁相检测来测量的,以便将微弱信号与相对较大的自发辐射和探针光束背景区分开来。因此,信号强度的直接表征往往是噪声、速度和数据采集方面的主要限制因素。相比之下,光子计数可直接量化信号强度,而同步泵浦探针脉冲可精确计时并相应地分离信号。在这里,基于 SE 的泵探针方法与时间相关单光子计数相结合,以数字方式定量研究超快光化学参数。作为概念验证,我们应用该技术定量研究了荧光染料(ATTO 647N)的荧光寿命 ( τ ) ∼ 3.71 ns、光吸收截面 ( σ abs ) ∼ 1.23 × 10 - 16 c m 2 和 SE 截面 ( σ SE ) ∼ 2.22 × 10 - 17 c m 2。实验结果还与理论光子统计进行了比较,进一步证明了实验和统计临界分子动力学参数提取具有极高精确度的优势。
Photon counting based pump-probe technique for quantitative characterization of fluorescence in a lock-in free detection manner
The stimulated emission (SE) signal in pump-probe experiment is conventionally measured with lock-in detection to differentiate the weak signals from the relatively large background of spontaneous emission and probe beam. Therefore, direct characterization of signal strength are often major limiting factors in terms of noise, speed, and data acquisition. In contrast, photon counting allows direct quantification of signal strength, while synchronized pump-probe pulse enables precise timing and the separation of signals accordingly. Herein, the SE based pump-probe method is combined with time-correlated single-photon counting to investigate the ultrafast photochemical parameters, digitally and quantitatively. As a proof-of-concept, our technique is applied to investigate, fluorescence lifetime (τ)∼3.71ns, optical absorption cross-section (σabs)∼1.23×10−16cm2, and the SE cross-section (σSE)∼2.22×10−17cm2, of a fluorescent dye (ATTO 647N) quantitatively. The experimental results are also compared with theoretical photon statistics to further justify the advantages including experimental and statistical critical molecular dynamics parameters extraction with excellent high accuracy.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.