新型铁磁性铁-钴/纳米金刚石杂化纳米结构:碳对其结构和磁性能的影响

IF 2.6 4区 化学 Q2 CHEMISTRY, INORGANIC & NUCLEAR
P. Ziogas, A. Bourlinos, P. Chatzopoulou, G. Dimitrakopulos, A. Markou, A. Douvalis
{"title":"新型铁磁性铁-钴/纳米金刚石杂化纳米结构:碳对其结构和磁性能的影响","authors":"P. Ziogas, A. Bourlinos, P. Chatzopoulou, G. Dimitrakopulos, A. Markou, A. Douvalis","doi":"10.3390/magnetochemistry10050035","DOIUrl":null,"url":null,"abstract":"This study introduces a novel magnetic nanohybrid material consisting of ferromagnetic (FM) bcc Fe–Co nanoparticles (NPs) grown on nanodiamond (ND) nanotemplates. A combination of wet chemistry, which produces chemical precursors and their subsequent thermal treatment under vacuum, was utilized for its development. The characterization and study of the prepared samples performed with a range of specialized experimental techniques reveal that thermal treatment of the as-prepared hybrid precursors under a range of annealing conditions leads to the development of Co-rich Fe–Co alloy NPs, with average sizes in the range of 6–10 nm, that exhibit uniform distribution on the surfaces of the ND nanotemplates and demonstrate FM behavior throughout a temperature range from 2 K to 400 K, with maximum magnetization values ranging between 18.9 and 21.1 emu/g and coercivities ranging between 112 and 881 Oe. Moreover, 57Fe Mössbauer spectroscopy reveals that apart from the predominant bcc FM Fe–Co phase, iron atoms also participate in the formation of a secondary martensitic-type Fe–Co phase. The emergence of this distinctive phase is attributed to the diffusion of carbon atoms within the Fe–Co lattices during their formation at elevated temperatures. The source of these carbon atoms is related to the unique morphological properties of the ND growth matrices, which facilitate surface sp2 formations. Apart from their diffusion within the Fe–Co NP lattice, the carbon atoms also reconstruct layered graphitic-type nanostructures enveloping the metallic alloy NPs. These non-typical nanohybrid materials, reported here for the first time in the literature, hold significant potential for use in applications related, but not limited to, biomedicine, biopharmaceutics, catalysis, and other various contemporary technological fields.","PeriodicalId":18194,"journal":{"name":"Magnetochemistry","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Novel Hybrid Ferromagnetic Fe–Co/Nanodiamond Nanostructures: Influence of Carbon on Their Structural and Magnetic Properties\",\"authors\":\"P. Ziogas, A. Bourlinos, P. Chatzopoulou, G. Dimitrakopulos, A. Markou, A. Douvalis\",\"doi\":\"10.3390/magnetochemistry10050035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study introduces a novel magnetic nanohybrid material consisting of ferromagnetic (FM) bcc Fe–Co nanoparticles (NPs) grown on nanodiamond (ND) nanotemplates. A combination of wet chemistry, which produces chemical precursors and their subsequent thermal treatment under vacuum, was utilized for its development. The characterization and study of the prepared samples performed with a range of specialized experimental techniques reveal that thermal treatment of the as-prepared hybrid precursors under a range of annealing conditions leads to the development of Co-rich Fe–Co alloy NPs, with average sizes in the range of 6–10 nm, that exhibit uniform distribution on the surfaces of the ND nanotemplates and demonstrate FM behavior throughout a temperature range from 2 K to 400 K, with maximum magnetization values ranging between 18.9 and 21.1 emu/g and coercivities ranging between 112 and 881 Oe. Moreover, 57Fe Mössbauer spectroscopy reveals that apart from the predominant bcc FM Fe–Co phase, iron atoms also participate in the formation of a secondary martensitic-type Fe–Co phase. The emergence of this distinctive phase is attributed to the diffusion of carbon atoms within the Fe–Co lattices during their formation at elevated temperatures. The source of these carbon atoms is related to the unique morphological properties of the ND growth matrices, which facilitate surface sp2 formations. Apart from their diffusion within the Fe–Co NP lattice, the carbon atoms also reconstruct layered graphitic-type nanostructures enveloping the metallic alloy NPs. These non-typical nanohybrid materials, reported here for the first time in the literature, hold significant potential for use in applications related, but not limited to, biomedicine, biopharmaceutics, catalysis, and other various contemporary technological fields.\",\"PeriodicalId\":18194,\"journal\":{\"name\":\"Magnetochemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Magnetochemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.3390/magnetochemistry10050035\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Magnetochemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/magnetochemistry10050035","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

摘要

本研究介绍了一种新型磁性纳米混合材料,该材料由生长在纳米金刚石(ND)纳米模板上的铁磁性(FM)bcc Fe-Co 纳米粒子(NPs)组成。在开发过程中,采用了湿化学(产生化学前体)与随后的真空热处理相结合的方法。利用一系列专业实验技术对制备的样品进行的表征和研究表明,在一系列退火条件下对制备的混合前驱体进行热处理,可形成富含钴的铁钴合金 NPs,其平均尺寸在 6-10 纳米之间,在 ND 纳米模板表面呈均匀分布,在 2 K 到 400 K 的温度范围内表现出调频行为,最大磁化值在 18.9 到 21.1 emu/g 之间,矫顽力在 112 到 881 Oe 之间。此外,57Fe Mössbauer 光谱显示,除了主要的 bcc FM 铁-钴相之外,铁原子还参与了次生马氏体型铁-钴相的形成。这一独特相位的出现归因于碳原子在高温下形成的 Fe-Co 晶格内的扩散。这些碳原子的来源与 ND 生长基质的独特形态特性有关,它有利于表面 sp2 的形成。碳原子除了在铁-钴 NP 晶格内扩散外,还在金属合金 NP 外重建了层状石墨型纳米结构。这些非典型纳米杂化材料是首次在文献中报道,在与生物医学、生物制药、催化及其他各种当代技术领域相关的应用中具有巨大的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Novel Hybrid Ferromagnetic Fe–Co/Nanodiamond Nanostructures: Influence of Carbon on Their Structural and Magnetic Properties
This study introduces a novel magnetic nanohybrid material consisting of ferromagnetic (FM) bcc Fe–Co nanoparticles (NPs) grown on nanodiamond (ND) nanotemplates. A combination of wet chemistry, which produces chemical precursors and their subsequent thermal treatment under vacuum, was utilized for its development. The characterization and study of the prepared samples performed with a range of specialized experimental techniques reveal that thermal treatment of the as-prepared hybrid precursors under a range of annealing conditions leads to the development of Co-rich Fe–Co alloy NPs, with average sizes in the range of 6–10 nm, that exhibit uniform distribution on the surfaces of the ND nanotemplates and demonstrate FM behavior throughout a temperature range from 2 K to 400 K, with maximum magnetization values ranging between 18.9 and 21.1 emu/g and coercivities ranging between 112 and 881 Oe. Moreover, 57Fe Mössbauer spectroscopy reveals that apart from the predominant bcc FM Fe–Co phase, iron atoms also participate in the formation of a secondary martensitic-type Fe–Co phase. The emergence of this distinctive phase is attributed to the diffusion of carbon atoms within the Fe–Co lattices during their formation at elevated temperatures. The source of these carbon atoms is related to the unique morphological properties of the ND growth matrices, which facilitate surface sp2 formations. Apart from their diffusion within the Fe–Co NP lattice, the carbon atoms also reconstruct layered graphitic-type nanostructures enveloping the metallic alloy NPs. These non-typical nanohybrid materials, reported here for the first time in the literature, hold significant potential for use in applications related, but not limited to, biomedicine, biopharmaceutics, catalysis, and other various contemporary technological fields.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Magnetochemistry
Magnetochemistry Chemistry-Chemistry (miscellaneous)
CiteScore
3.90
自引率
11.10%
发文量
145
审稿时长
11 weeks
期刊介绍: Magnetochemistry (ISSN 2312-7481) is a unique international, scientific open access journal on molecular magnetism, the relationship between chemical structure and magnetism and magnetic materials. Magnetochemistry publishes research articles, short communications and reviews. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信