Hsiao-Hsuan Wan, Jian-Sian Li, Chao-Ching Chiang, Xinyi Xia, Fan Ren, Hannah Masten, James Spencer Lundh, Joseph Spencer, Fikadu Alema, Andrei Osinsky, A. Jacobs, Karl D. Hobart, Marko Tadjer, S. J. Pearton
{"title":"工作温度高达 225°C 的 NiO/ β-(Al0.21Ga0.79)2O3 /Ga2O3 异质结侧整流器","authors":"Hsiao-Hsuan Wan, Jian-Sian Li, Chao-Ching Chiang, Xinyi Xia, Fan Ren, Hannah Masten, James Spencer Lundh, Joseph Spencer, Fikadu Alema, Andrei Osinsky, A. Jacobs, Karl D. Hobart, Marko Tadjer, S. J. Pearton","doi":"10.1149/11307.0003ecst","DOIUrl":null,"url":null,"abstract":"The characteristics of NiO/ β-(Al0.21Ga0.79)2O3 /Ga2O3 heterojunction lateral geometry rectifiers with the epitaxial layers grown by Metal Organic Chemical Vapor Deposition were measured over the temperature range from 25-225°C. The forward current increased with temperature, while the on-state resistance decreased from 360 Ω•cm2 at 25°C to 30 Ω.cm2 at 225°C. The forward turn-on voltage was reduced from 4 V at 25°C to 1.9 V at 225°C. The reverse breakdown voltage at room temperature was ~4.2 kV, with a temperature coefficient of -16.5 V/K. This negative temperature coefficient precludes avalanche being the breakdown mechanism and indicates that defects still dominate the reverse conduction characteristics. The corresponding power figures-of-merit were 0.27-0.49 MW.cm-2. The maximum on/off ratios improved with temperature from 2105 at 25°C to 3107 at 225°C when switching from 5 V forward to 0 V. The high temperature performance of the NiO/ β-(Al0.21Ga0.79)2O3 /Ga2O3 lateral rectifiers is promising if the current rate of optimization continues.","PeriodicalId":11473,"journal":{"name":"ECS Transactions","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Operation up to 225°C of NiO/ β-(Al0.21Ga0.79)2O3 /Ga2O3 Heterojunction Lateral Rectifiers\",\"authors\":\"Hsiao-Hsuan Wan, Jian-Sian Li, Chao-Ching Chiang, Xinyi Xia, Fan Ren, Hannah Masten, James Spencer Lundh, Joseph Spencer, Fikadu Alema, Andrei Osinsky, A. Jacobs, Karl D. Hobart, Marko Tadjer, S. J. Pearton\",\"doi\":\"10.1149/11307.0003ecst\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The characteristics of NiO/ β-(Al0.21Ga0.79)2O3 /Ga2O3 heterojunction lateral geometry rectifiers with the epitaxial layers grown by Metal Organic Chemical Vapor Deposition were measured over the temperature range from 25-225°C. The forward current increased with temperature, while the on-state resistance decreased from 360 Ω•cm2 at 25°C to 30 Ω.cm2 at 225°C. The forward turn-on voltage was reduced from 4 V at 25°C to 1.9 V at 225°C. The reverse breakdown voltage at room temperature was ~4.2 kV, with a temperature coefficient of -16.5 V/K. This negative temperature coefficient precludes avalanche being the breakdown mechanism and indicates that defects still dominate the reverse conduction characteristics. The corresponding power figures-of-merit were 0.27-0.49 MW.cm-2. The maximum on/off ratios improved with temperature from 2105 at 25°C to 3107 at 225°C when switching from 5 V forward to 0 V. The high temperature performance of the NiO/ β-(Al0.21Ga0.79)2O3 /Ga2O3 lateral rectifiers is promising if the current rate of optimization continues.\",\"PeriodicalId\":11473,\"journal\":{\"name\":\"ECS Transactions\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ECS Transactions\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1149/11307.0003ecst\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ECS Transactions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1149/11307.0003ecst","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Operation up to 225°C of NiO/ β-(Al0.21Ga0.79)2O3 /Ga2O3 Heterojunction Lateral Rectifiers
The characteristics of NiO/ β-(Al0.21Ga0.79)2O3 /Ga2O3 heterojunction lateral geometry rectifiers with the epitaxial layers grown by Metal Organic Chemical Vapor Deposition were measured over the temperature range from 25-225°C. The forward current increased with temperature, while the on-state resistance decreased from 360 Ω•cm2 at 25°C to 30 Ω.cm2 at 225°C. The forward turn-on voltage was reduced from 4 V at 25°C to 1.9 V at 225°C. The reverse breakdown voltage at room temperature was ~4.2 kV, with a temperature coefficient of -16.5 V/K. This negative temperature coefficient precludes avalanche being the breakdown mechanism and indicates that defects still dominate the reverse conduction characteristics. The corresponding power figures-of-merit were 0.27-0.49 MW.cm-2. The maximum on/off ratios improved with temperature from 2105 at 25°C to 3107 at 225°C when switching from 5 V forward to 0 V. The high temperature performance of the NiO/ β-(Al0.21Ga0.79)2O3 /Ga2O3 lateral rectifiers is promising if the current rate of optimization continues.