的拱顶新形式理论

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Peter Humphries
{"title":"的拱顶新形式理论","authors":"Peter Humphries","doi":"10.1017/s1474748024000227","DOIUrl":null,"url":null,"abstract":"\n We introduce a new invariant, the conductor exponent, of a generic irreducible Casselman–Wallach representation of \n \n \n \n$\\operatorname {\\mathrm {GL}}_n(F)$\n\n \n , where F is an archimedean local field, that quantifies the extent to which this representation may be ramified. We also determine a distinguished vector, the newform, occurring with multiplicity one in this representation, with the complexity of this vector measured in a natural way by the conductor exponent. Finally, we show that the newform is a test vector for \n \n \n \n$\\operatorname {\\mathrm {GL}}_n \\times \\operatorname {\\mathrm {GL}}_n$\n\n \n and \n \n \n \n$\\operatorname {\\mathrm {GL}}_n \\times \\operatorname {\\mathrm {GL}}_{n - 1}$\n\n \n Rankin–Selberg integrals when the second representation is unramified. This theory parallels an analogous nonarchimedean theory due to Jacquet, Piatetski-Shapiro, and Shalika; combined, this completes a global theory of newforms for automorphic representations of \n \n \n \n$\\operatorname {\\mathrm {GL}}_n$\n\n \n over number fields. By-products of the proofs include new proofs of Stade’s formulæ and a new resolution of the test vector problem for archimedean Godement–Jacquet zeta integrals.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ARCHIMEDEAN NEWFORM THEORY FOR\",\"authors\":\"Peter Humphries\",\"doi\":\"10.1017/s1474748024000227\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n We introduce a new invariant, the conductor exponent, of a generic irreducible Casselman–Wallach representation of \\n \\n \\n \\n$\\\\operatorname {\\\\mathrm {GL}}_n(F)$\\n\\n \\n , where F is an archimedean local field, that quantifies the extent to which this representation may be ramified. We also determine a distinguished vector, the newform, occurring with multiplicity one in this representation, with the complexity of this vector measured in a natural way by the conductor exponent. Finally, we show that the newform is a test vector for \\n \\n \\n \\n$\\\\operatorname {\\\\mathrm {GL}}_n \\\\times \\\\operatorname {\\\\mathrm {GL}}_n$\\n\\n \\n and \\n \\n \\n \\n$\\\\operatorname {\\\\mathrm {GL}}_n \\\\times \\\\operatorname {\\\\mathrm {GL}}_{n - 1}$\\n\\n \\n Rankin–Selberg integrals when the second representation is unramified. This theory parallels an analogous nonarchimedean theory due to Jacquet, Piatetski-Shapiro, and Shalika; combined, this completes a global theory of newforms for automorphic representations of \\n \\n \\n \\n$\\\\operatorname {\\\\mathrm {GL}}_n$\\n\\n \\n over number fields. By-products of the proofs include new proofs of Stade’s formulæ and a new resolution of the test vector problem for archimedean Godement–Jacquet zeta integrals.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/s1474748024000227\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s1474748024000227","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

我们为 $operatorname {\mathrm {GL}}_n(F)$ (其中 F 是一个阿基米德局部场)的一般不可还原卡塞尔曼-瓦拉几表示引入了一个新的不变量--导体指数,它量化了这个表示可能被夯实的程度。我们还确定了一个杰出的向量--新形式,它在这个表示中出现的倍率为 1,这个向量的复杂性可以用导体指数来自然地衡量。最后,我们证明了当第二个表示没有ramified时,新形式是 $\operatorname {\mathrm {GL}}_n \times \operatorname {\mathrm {GL}}_n$ 和 $\operatorname {\mathrm {GL}}_n \times \operatorname {\mathrm {GL}}_{n - 1}$ 兰金-塞尔伯格积分的检验向量。这一理论与雅克特(Jacquet)、皮亚特斯基-沙皮罗(Piatetski-Shapiro)和沙利卡(Shalika)提出的类似的非archimedean理论相似;结合起来,就完成了数域上$operatorname {\mathrm {GL}}_n$ 的自变态表示的新形态全局理论。这些证明的副产品包括对斯塔德公式的新证明,以及对拱顶戈德门-雅克特zeta积分的检验向量问题的新解决。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ARCHIMEDEAN NEWFORM THEORY FOR
We introduce a new invariant, the conductor exponent, of a generic irreducible Casselman–Wallach representation of $\operatorname {\mathrm {GL}}_n(F)$ , where F is an archimedean local field, that quantifies the extent to which this representation may be ramified. We also determine a distinguished vector, the newform, occurring with multiplicity one in this representation, with the complexity of this vector measured in a natural way by the conductor exponent. Finally, we show that the newform is a test vector for $\operatorname {\mathrm {GL}}_n \times \operatorname {\mathrm {GL}}_n$ and $\operatorname {\mathrm {GL}}_n \times \operatorname {\mathrm {GL}}_{n - 1}$ Rankin–Selberg integrals when the second representation is unramified. This theory parallels an analogous nonarchimedean theory due to Jacquet, Piatetski-Shapiro, and Shalika; combined, this completes a global theory of newforms for automorphic representations of $\operatorname {\mathrm {GL}}_n$ over number fields. By-products of the proofs include new proofs of Stade’s formulæ and a new resolution of the test vector problem for archimedean Godement–Jacquet zeta integrals.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信