{"title":"具有不同催化剂层形态的低铂负载 PEM 燃料电池的耐久性研究","authors":"A. Saeidfar, S. Yeşilyurt","doi":"10.1149/11311.0003ecst","DOIUrl":null,"url":null,"abstract":"This study investigates the durability of proton exchange membrane fuel cells against the Pt-dissolution degradation mechanism using a triangular accelerated stress test (AST) within the voltage range of 0.6-1 V. The electrochemical active surface area and polarization curves are reported throughout the AST for three different catalyst layers (CL), all featuring 0.1 mg/cm2 Pt loading but with different morphologies, which include the Pt/C weight percentages, dilution ratio, and thickness. In addition, a numerical model is employed to simulate the electrochemical performance of these samples at the beginning and end of life, considering the variations in the oxygen transport resistances and catalyst structure.","PeriodicalId":11473,"journal":{"name":"ECS Transactions","volume":"2 12","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Durability Investigation of Low Pt-Loaded PEM Fuel Cells with Different Catalyst Layer Morphologies\",\"authors\":\"A. Saeidfar, S. Yeşilyurt\",\"doi\":\"10.1149/11311.0003ecst\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study investigates the durability of proton exchange membrane fuel cells against the Pt-dissolution degradation mechanism using a triangular accelerated stress test (AST) within the voltage range of 0.6-1 V. The electrochemical active surface area and polarization curves are reported throughout the AST for three different catalyst layers (CL), all featuring 0.1 mg/cm2 Pt loading but with different morphologies, which include the Pt/C weight percentages, dilution ratio, and thickness. In addition, a numerical model is employed to simulate the electrochemical performance of these samples at the beginning and end of life, considering the variations in the oxygen transport resistances and catalyst structure.\",\"PeriodicalId\":11473,\"journal\":{\"name\":\"ECS Transactions\",\"volume\":\"2 12\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ECS Transactions\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1149/11311.0003ecst\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ECS Transactions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1149/11311.0003ecst","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
本研究采用三角加速应力测试(AST),在 0.6-1 V 的电压范围内研究质子交换膜燃料电池在铂溶解降解机制下的耐久性。报告了三种不同催化剂层(CL)在整个 AST 期间的电化学活性表面积和极化曲线。此外,考虑到氧传输电阻和催化剂结构的变化,还采用了一个数值模型来模拟这些样品在寿命开始和结束时的电化学性能。
Durability Investigation of Low Pt-Loaded PEM Fuel Cells with Different Catalyst Layer Morphologies
This study investigates the durability of proton exchange membrane fuel cells against the Pt-dissolution degradation mechanism using a triangular accelerated stress test (AST) within the voltage range of 0.6-1 V. The electrochemical active surface area and polarization curves are reported throughout the AST for three different catalyst layers (CL), all featuring 0.1 mg/cm2 Pt loading but with different morphologies, which include the Pt/C weight percentages, dilution ratio, and thickness. In addition, a numerical model is employed to simulate the electrochemical performance of these samples at the beginning and end of life, considering the variations in the oxygen transport resistances and catalyst structure.