{"title":"早期动脉粥样硬化多阶段模型中的高密度脂蛋白和斑块消退。","authors":"Ishraq U. Ahmed, Mary R. Myerscough","doi":"10.1016/j.mbs.2024.109208","DOIUrl":null,"url":null,"abstract":"<div><p>Atherosclerosis is a chronic disease of the arteries characterised by the accumulation of lipids and lipid-engorged cells in the artery wall. Early plaque growth is aggravated by the deposition of low density lipoproteins (LDL) in the wall and the subsequent immune response. High density lipoproteins (HDL) counterbalance the effects of LDL by accepting cholesterol from macrophages and removing it from the plaque. In this paper, we develop a free boundary multiphase model to investigate the effects of LDL and HDL on early plaque development. We examine how the rates of LDL and HDL deposition affect cholesterol accumulation in macrophages, and how this impacts cell death rates and emigration. We identify a region of LDL–HDL parameter space where plaque growth stabilises for low LDL and high HDL influxes, due to macrophage emigration and HDL clearance that counterbalances the influx of new cells and cholesterol. We explore how the efferocytic uptake of dead cells and the recruitment of new macrophages affect plaque development for a range of LDL and HDL influxes. Finally, we consider how changes in the LDL–HDL profile can change the course of plaque development. We show that changes towards lower LDL and higher HDL can slow plaque growth and even induce regression. We find that these changes have less effect on larger, more established plaques, and that temporary changes will only slow plaque growth in the short term.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0025556424000683/pdfft?md5=71737ed98209781657910c717dc32041&pid=1-s2.0-S0025556424000683-main.pdf","citationCount":"0","resultStr":"{\"title\":\"HDL and plaque regression in a multiphase model of early atherosclerosis\",\"authors\":\"Ishraq U. Ahmed, Mary R. Myerscough\",\"doi\":\"10.1016/j.mbs.2024.109208\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Atherosclerosis is a chronic disease of the arteries characterised by the accumulation of lipids and lipid-engorged cells in the artery wall. Early plaque growth is aggravated by the deposition of low density lipoproteins (LDL) in the wall and the subsequent immune response. High density lipoproteins (HDL) counterbalance the effects of LDL by accepting cholesterol from macrophages and removing it from the plaque. In this paper, we develop a free boundary multiphase model to investigate the effects of LDL and HDL on early plaque development. We examine how the rates of LDL and HDL deposition affect cholesterol accumulation in macrophages, and how this impacts cell death rates and emigration. We identify a region of LDL–HDL parameter space where plaque growth stabilises for low LDL and high HDL influxes, due to macrophage emigration and HDL clearance that counterbalances the influx of new cells and cholesterol. We explore how the efferocytic uptake of dead cells and the recruitment of new macrophages affect plaque development for a range of LDL and HDL influxes. Finally, we consider how changes in the LDL–HDL profile can change the course of plaque development. We show that changes towards lower LDL and higher HDL can slow plaque growth and even induce regression. We find that these changes have less effect on larger, more established plaques, and that temporary changes will only slow plaque growth in the short term.</p></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0025556424000683/pdfft?md5=71737ed98209781657910c717dc32041&pid=1-s2.0-S0025556424000683-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0025556424000683\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0025556424000683","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
HDL and plaque regression in a multiphase model of early atherosclerosis
Atherosclerosis is a chronic disease of the arteries characterised by the accumulation of lipids and lipid-engorged cells in the artery wall. Early plaque growth is aggravated by the deposition of low density lipoproteins (LDL) in the wall and the subsequent immune response. High density lipoproteins (HDL) counterbalance the effects of LDL by accepting cholesterol from macrophages and removing it from the plaque. In this paper, we develop a free boundary multiphase model to investigate the effects of LDL and HDL on early plaque development. We examine how the rates of LDL and HDL deposition affect cholesterol accumulation in macrophages, and how this impacts cell death rates and emigration. We identify a region of LDL–HDL parameter space where plaque growth stabilises for low LDL and high HDL influxes, due to macrophage emigration and HDL clearance that counterbalances the influx of new cells and cholesterol. We explore how the efferocytic uptake of dead cells and the recruitment of new macrophages affect plaque development for a range of LDL and HDL influxes. Finally, we consider how changes in the LDL–HDL profile can change the course of plaque development. We show that changes towards lower LDL and higher HDL can slow plaque growth and even induce regression. We find that these changes have less effect on larger, more established plaques, and that temporary changes will only slow plaque growth in the short term.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.