{"title":"用生态进化针缝合浮游生物之间的多层次关系。","authors":"Van M Savage","doi":"10.1016/j.cels.2024.04.007","DOIUrl":null,"url":null,"abstract":"<p><p>Power-law relationships between population abundances, energy use, and other factors are often referred to as macroecological scaling. A recent study convincingly shows that these relationships emerge from individual physiology but only after the population distribution is shaped by trophic interactions that are subject to both ecological and evolutionary pressures.</p>","PeriodicalId":93929,"journal":{"name":"Cell systems","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multilevel relations among plankton stitched together with an eco-evolutionary needle.\",\"authors\":\"Van M Savage\",\"doi\":\"10.1016/j.cels.2024.04.007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Power-law relationships between population abundances, energy use, and other factors are often referred to as macroecological scaling. A recent study convincingly shows that these relationships emerge from individual physiology but only after the population distribution is shaped by trophic interactions that are subject to both ecological and evolutionary pressures.</p>\",\"PeriodicalId\":93929,\"journal\":{\"name\":\"Cell systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.cels.2024.04.007\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.cels.2024.04.007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Multilevel relations among plankton stitched together with an eco-evolutionary needle.
Power-law relationships between population abundances, energy use, and other factors are often referred to as macroecological scaling. A recent study convincingly shows that these relationships emerge from individual physiology but only after the population distribution is shaped by trophic interactions that are subject to both ecological and evolutionary pressures.