{"title":"系统发育多样性指数对灭绝的稳健性。","authors":"Kerry Manson","doi":"10.1007/s00285-024-02098-5","DOIUrl":null,"url":null,"abstract":"<p><p>Phylogenetic diversity indices provide a formal way to apportion evolutionary history amongst living species. Understanding the properties of these measures is key to determining their applicability in conservation biology settings. In this work, we investigate some questions posed in a recent paper by Fischer et al. (Syst Biol 72(3):606-615, 2023). In that paper, it is shown that under certain extinction scenarios, the ranking of the surviving species by their Fair Proportion index scores may be the complete reverse of their ranking beforehand. Our main results here show that this behaviour extends to a large class of phylogenetic diversity indices, including the Equal-Splits index. We also provide a necessary condition for reversals of Fair Proportion rankings to occur on phylogenetic trees whose edge lengths obey the ultrametric constraint. Specific examples of rooted phylogenetic trees displaying these behaviours are given and the impact of our results on the use of phylogenetic diversity indices more generally is discussed.</p>","PeriodicalId":50148,"journal":{"name":"Journal of Mathematical Biology","volume":"89 1","pages":"5"},"PeriodicalIF":2.2000,"publicationDate":"2024-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11102419/pdf/","citationCount":"0","resultStr":"{\"title\":\"The robustness of phylogenetic diversity indices to extinctions.\",\"authors\":\"Kerry Manson\",\"doi\":\"10.1007/s00285-024-02098-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Phylogenetic diversity indices provide a formal way to apportion evolutionary history amongst living species. Understanding the properties of these measures is key to determining their applicability in conservation biology settings. In this work, we investigate some questions posed in a recent paper by Fischer et al. (Syst Biol 72(3):606-615, 2023). In that paper, it is shown that under certain extinction scenarios, the ranking of the surviving species by their Fair Proportion index scores may be the complete reverse of their ranking beforehand. Our main results here show that this behaviour extends to a large class of phylogenetic diversity indices, including the Equal-Splits index. We also provide a necessary condition for reversals of Fair Proportion rankings to occur on phylogenetic trees whose edge lengths obey the ultrametric constraint. Specific examples of rooted phylogenetic trees displaying these behaviours are given and the impact of our results on the use of phylogenetic diversity indices more generally is discussed.</p>\",\"PeriodicalId\":50148,\"journal\":{\"name\":\"Journal of Mathematical Biology\",\"volume\":\"89 1\",\"pages\":\"5\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-05-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11102419/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Biology\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00285-024-02098-5\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Biology","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00285-024-02098-5","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
The robustness of phylogenetic diversity indices to extinctions.
Phylogenetic diversity indices provide a formal way to apportion evolutionary history amongst living species. Understanding the properties of these measures is key to determining their applicability in conservation biology settings. In this work, we investigate some questions posed in a recent paper by Fischer et al. (Syst Biol 72(3):606-615, 2023). In that paper, it is shown that under certain extinction scenarios, the ranking of the surviving species by their Fair Proportion index scores may be the complete reverse of their ranking beforehand. Our main results here show that this behaviour extends to a large class of phylogenetic diversity indices, including the Equal-Splits index. We also provide a necessary condition for reversals of Fair Proportion rankings to occur on phylogenetic trees whose edge lengths obey the ultrametric constraint. Specific examples of rooted phylogenetic trees displaying these behaviours are given and the impact of our results on the use of phylogenetic diversity indices more generally is discussed.
期刊介绍:
The Journal of Mathematical Biology focuses on mathematical biology - work that uses mathematical approaches to gain biological understanding or explain biological phenomena.
Areas of biology covered include, but are not restricted to, cell biology, physiology, development, neurobiology, genetics and population genetics, population biology, ecology, behavioural biology, evolution, epidemiology, immunology, molecular biology, biofluids, DNA and protein structure and function. All mathematical approaches including computational and visualization approaches are appropriate.