Vincenza Granata, Roberta Fusco, Sergio Venanzio Setola, Maria Chiara Brunese, Annabella Di Mauro, Antonio Avallone, Alessandro Ottaiano, Nicola Normanno, Antonella Petrillo, Francesco Izzo
{"title":"通过计算机断层扫描对结直肠肝转移患者进行机器学习和放射组学分析,预测RAS突变状态。","authors":"Vincenza Granata, Roberta Fusco, Sergio Venanzio Setola, Maria Chiara Brunese, Annabella Di Mauro, Antonio Avallone, Alessandro Ottaiano, Nicola Normanno, Antonella Petrillo, Francesco Izzo","doi":"10.1007/s11547-024-01828-5","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>To assess the efficacy of machine learning and radiomics analysis by computed tomography (CT) in presurgical setting, to predict RAS mutational status in colorectal liver metastases.</p><p><strong>Methods: </strong>Patient selection in a retrospective study was carried out from January 2018 to May 2021 considering the following inclusion criteria: patients subjected to surgical resection for liver metastases; proven pathological liver metastases; patients subjected to enhanced CT examination in the presurgical setting with a good quality of images; and RAS assessment as standard reference. A total of 851 radiomics features were extracted using the PyRadiomics Python package from the Slicer 3D image computing platform after slice-by-slice segmentation on CT portal phase by two expert radiologists of each individual liver metastasis performed first independently by the individual reader and then in consensus. Balancing technique was performed, and inter- and intraclass correlation coefficients were calculated to assess the between-observer and within-observer reproducibility of features. Receiver operating characteristics (ROC) analysis with the calculation of area under the ROC curve (AUC), sensitivity (SENS), specificity (SPEC), positive predictive value (PPV), negative predictive value (NPV) and accuracy (ACC) were assessed for each parameter. Linear and non-logistic regression model (LRM and NLRM) and different machine learning-based classifiers were considered. Moreover, features selection was performed before and after a normalized procedure using two different methods (3-sigma and z-score).</p><p><strong>Results: </strong>Seventy-seven liver metastases in 28 patients with a mean age of 60 years (range 40-80 years) were analyzed. The best predictors, at univariate analysis for both normalized procedures, were original_shape_Maximum2DDiameter and wavelet_HLL_glcm_InverseVariance that reached an accuracy of 80%, an AUC ≥ 0.75, a sensitivity ≥ 80% and a specificity ≥ 70% (p value < < 0.01). However, a multivariate analysis significantly increased the accuracy in RAS prediction when a linear regression model (LRM) was used. The best performance was obtained using a LRM combining linearly 12 robust features after a z-score normalization procedure: AUC of 0.953, accuracy 98%, sensitivity 96%, specificity of 100%, PPV 100% and NPV 96% (p value < < 0.01). No statistically significant increase was obtained considering the tested machine learning both without normalization and with normalization methods.</p><p><strong>Conclusions: </strong>Normalized approach in CT radiomics analysis allows to predict RAS mutational status in colorectal liver metastases patients.</p>","PeriodicalId":20817,"journal":{"name":"Radiologia Medica","volume":" ","pages":"957-966"},"PeriodicalIF":9.7000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine learning and radiomics analysis by computed tomography in colorectal liver metastases patients for RAS mutational status prediction.\",\"authors\":\"Vincenza Granata, Roberta Fusco, Sergio Venanzio Setola, Maria Chiara Brunese, Annabella Di Mauro, Antonio Avallone, Alessandro Ottaiano, Nicola Normanno, Antonella Petrillo, Francesco Izzo\",\"doi\":\"10.1007/s11547-024-01828-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>To assess the efficacy of machine learning and radiomics analysis by computed tomography (CT) in presurgical setting, to predict RAS mutational status in colorectal liver metastases.</p><p><strong>Methods: </strong>Patient selection in a retrospective study was carried out from January 2018 to May 2021 considering the following inclusion criteria: patients subjected to surgical resection for liver metastases; proven pathological liver metastases; patients subjected to enhanced CT examination in the presurgical setting with a good quality of images; and RAS assessment as standard reference. A total of 851 radiomics features were extracted using the PyRadiomics Python package from the Slicer 3D image computing platform after slice-by-slice segmentation on CT portal phase by two expert radiologists of each individual liver metastasis performed first independently by the individual reader and then in consensus. Balancing technique was performed, and inter- and intraclass correlation coefficients were calculated to assess the between-observer and within-observer reproducibility of features. Receiver operating characteristics (ROC) analysis with the calculation of area under the ROC curve (AUC), sensitivity (SENS), specificity (SPEC), positive predictive value (PPV), negative predictive value (NPV) and accuracy (ACC) were assessed for each parameter. Linear and non-logistic regression model (LRM and NLRM) and different machine learning-based classifiers were considered. Moreover, features selection was performed before and after a normalized procedure using two different methods (3-sigma and z-score).</p><p><strong>Results: </strong>Seventy-seven liver metastases in 28 patients with a mean age of 60 years (range 40-80 years) were analyzed. The best predictors, at univariate analysis for both normalized procedures, were original_shape_Maximum2DDiameter and wavelet_HLL_glcm_InverseVariance that reached an accuracy of 80%, an AUC ≥ 0.75, a sensitivity ≥ 80% and a specificity ≥ 70% (p value < < 0.01). However, a multivariate analysis significantly increased the accuracy in RAS prediction when a linear regression model (LRM) was used. The best performance was obtained using a LRM combining linearly 12 robust features after a z-score normalization procedure: AUC of 0.953, accuracy 98%, sensitivity 96%, specificity of 100%, PPV 100% and NPV 96% (p value < < 0.01). No statistically significant increase was obtained considering the tested machine learning both without normalization and with normalization methods.</p><p><strong>Conclusions: </strong>Normalized approach in CT radiomics analysis allows to predict RAS mutational status in colorectal liver metastases patients.</p>\",\"PeriodicalId\":20817,\"journal\":{\"name\":\"Radiologia Medica\",\"volume\":\" \",\"pages\":\"957-966\"},\"PeriodicalIF\":9.7000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Radiologia Medica\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s11547-024-01828-5\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/5/18 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiologia Medica","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11547-024-01828-5","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/18 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
Machine learning and radiomics analysis by computed tomography in colorectal liver metastases patients for RAS mutational status prediction.
Purpose: To assess the efficacy of machine learning and radiomics analysis by computed tomography (CT) in presurgical setting, to predict RAS mutational status in colorectal liver metastases.
Methods: Patient selection in a retrospective study was carried out from January 2018 to May 2021 considering the following inclusion criteria: patients subjected to surgical resection for liver metastases; proven pathological liver metastases; patients subjected to enhanced CT examination in the presurgical setting with a good quality of images; and RAS assessment as standard reference. A total of 851 radiomics features were extracted using the PyRadiomics Python package from the Slicer 3D image computing platform after slice-by-slice segmentation on CT portal phase by two expert radiologists of each individual liver metastasis performed first independently by the individual reader and then in consensus. Balancing technique was performed, and inter- and intraclass correlation coefficients were calculated to assess the between-observer and within-observer reproducibility of features. Receiver operating characteristics (ROC) analysis with the calculation of area under the ROC curve (AUC), sensitivity (SENS), specificity (SPEC), positive predictive value (PPV), negative predictive value (NPV) and accuracy (ACC) were assessed for each parameter. Linear and non-logistic regression model (LRM and NLRM) and different machine learning-based classifiers were considered. Moreover, features selection was performed before and after a normalized procedure using two different methods (3-sigma and z-score).
Results: Seventy-seven liver metastases in 28 patients with a mean age of 60 years (range 40-80 years) were analyzed. The best predictors, at univariate analysis for both normalized procedures, were original_shape_Maximum2DDiameter and wavelet_HLL_glcm_InverseVariance that reached an accuracy of 80%, an AUC ≥ 0.75, a sensitivity ≥ 80% and a specificity ≥ 70% (p value < < 0.01). However, a multivariate analysis significantly increased the accuracy in RAS prediction when a linear regression model (LRM) was used. The best performance was obtained using a LRM combining linearly 12 robust features after a z-score normalization procedure: AUC of 0.953, accuracy 98%, sensitivity 96%, specificity of 100%, PPV 100% and NPV 96% (p value < < 0.01). No statistically significant increase was obtained considering the tested machine learning both without normalization and with normalization methods.
Conclusions: Normalized approach in CT radiomics analysis allows to predict RAS mutational status in colorectal liver metastases patients.
期刊介绍:
Felice Perussia founded La radiologia medica in 1914. It is a peer-reviewed journal and serves as the official journal of the Italian Society of Medical and Interventional Radiology (SIRM). The primary purpose of the journal is to disseminate information related to Radiology, especially advancements in diagnostic imaging and related disciplines. La radiologia medica welcomes original research on both fundamental and clinical aspects of modern radiology, with a particular focus on diagnostic and interventional imaging techniques. It also covers topics such as radiotherapy, nuclear medicine, radiobiology, health physics, and artificial intelligence in the context of clinical implications. The journal includes various types of contributions such as original articles, review articles, editorials, short reports, and letters to the editor. With an esteemed Editorial Board and a selection of insightful reports, the journal is an indispensable resource for radiologists and professionals in related fields. Ultimately, La radiologia medica aims to serve as a platform for international collaboration and knowledge sharing within the radiological community.