{"title":"使用深度学习人工智能对儿科患者的全景照片进行分类,以确定每个象限是否存在缺失牙齿。","authors":"Eunjin Kim, Jae Joon Hwang, Bong-Hae Cho, Eungyung Lee, Jonghyun Shin","doi":"10.22514/jocpd.2024.062","DOIUrl":null,"url":null,"abstract":"<p><p>Early tooth loss in pediatric patients can lead to various complications, making quick and accurate diagnosis essential. This study aimed to develop a novel deep learning model for classification of missing teeth on panoramic radiographs in pediatric patients and to assess the accuracy. The study included patients aged 8-16 years who visited the Pusan National University Dental Hospital and underwent panoramic radiography. A total of 806 panoramic radiographs were retrospectively analyzed to determine the presence or absence of missing teeth for each tooth number. Moreover, each panoramic radiograph was divided into four quadrants, each of a smaller size, containing both primary and permanent teeth, generating 3224 data. Quadrants with missing teeth (n = 1457) were set as the experimental group, and quadrants without missing teeth (n = 1767) were set as the control group. The data were split into training and validation sets in a 4:1 ratio, and a 5-fold cross-validation was conducted. A gradient-weighted class activation map was used to visualize the deep learning model. The average values of sensitivity, specificity, accuracy, precision, recall and F1-score of this deep learning model were 0.635, 0.814, 0.738, 0.730, 0.732 and 0.731, respectively. In the experimental group, the accuracy was the highest for missing canines and premolars, and the lowest for molars. The deep learning model exhibited a moderate to good distinguishing power with a classification performance of 0.730. This deep learning model and the newly defined small sized region of interest proved adequate for classifying the presence of missing teeth.</p>","PeriodicalId":50235,"journal":{"name":"Journal of Clinical Pediatric Dentistry","volume":"48 3","pages":"76-85"},"PeriodicalIF":1.5000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Classification of presence of missing teeth in each quadrant using deep learning artificial intelligence on panoramic radiographs of pediatric patients.\",\"authors\":\"Eunjin Kim, Jae Joon Hwang, Bong-Hae Cho, Eungyung Lee, Jonghyun Shin\",\"doi\":\"10.22514/jocpd.2024.062\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Early tooth loss in pediatric patients can lead to various complications, making quick and accurate diagnosis essential. This study aimed to develop a novel deep learning model for classification of missing teeth on panoramic radiographs in pediatric patients and to assess the accuracy. The study included patients aged 8-16 years who visited the Pusan National University Dental Hospital and underwent panoramic radiography. A total of 806 panoramic radiographs were retrospectively analyzed to determine the presence or absence of missing teeth for each tooth number. Moreover, each panoramic radiograph was divided into four quadrants, each of a smaller size, containing both primary and permanent teeth, generating 3224 data. Quadrants with missing teeth (n = 1457) were set as the experimental group, and quadrants without missing teeth (n = 1767) were set as the control group. The data were split into training and validation sets in a 4:1 ratio, and a 5-fold cross-validation was conducted. A gradient-weighted class activation map was used to visualize the deep learning model. The average values of sensitivity, specificity, accuracy, precision, recall and F1-score of this deep learning model were 0.635, 0.814, 0.738, 0.730, 0.732 and 0.731, respectively. In the experimental group, the accuracy was the highest for missing canines and premolars, and the lowest for molars. The deep learning model exhibited a moderate to good distinguishing power with a classification performance of 0.730. This deep learning model and the newly defined small sized region of interest proved adequate for classifying the presence of missing teeth.</p>\",\"PeriodicalId\":50235,\"journal\":{\"name\":\"Journal of Clinical Pediatric Dentistry\",\"volume\":\"48 3\",\"pages\":\"76-85\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Clinical Pediatric Dentistry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.22514/jocpd.2024.062\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/5/3 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"DENTISTRY, ORAL SURGERY & MEDICINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Clinical Pediatric Dentistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.22514/jocpd.2024.062","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/3 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
Classification of presence of missing teeth in each quadrant using deep learning artificial intelligence on panoramic radiographs of pediatric patients.
Early tooth loss in pediatric patients can lead to various complications, making quick and accurate diagnosis essential. This study aimed to develop a novel deep learning model for classification of missing teeth on panoramic radiographs in pediatric patients and to assess the accuracy. The study included patients aged 8-16 years who visited the Pusan National University Dental Hospital and underwent panoramic radiography. A total of 806 panoramic radiographs were retrospectively analyzed to determine the presence or absence of missing teeth for each tooth number. Moreover, each panoramic radiograph was divided into four quadrants, each of a smaller size, containing both primary and permanent teeth, generating 3224 data. Quadrants with missing teeth (n = 1457) were set as the experimental group, and quadrants without missing teeth (n = 1767) were set as the control group. The data were split into training and validation sets in a 4:1 ratio, and a 5-fold cross-validation was conducted. A gradient-weighted class activation map was used to visualize the deep learning model. The average values of sensitivity, specificity, accuracy, precision, recall and F1-score of this deep learning model were 0.635, 0.814, 0.738, 0.730, 0.732 and 0.731, respectively. In the experimental group, the accuracy was the highest for missing canines and premolars, and the lowest for molars. The deep learning model exhibited a moderate to good distinguishing power with a classification performance of 0.730. This deep learning model and the newly defined small sized region of interest proved adequate for classifying the presence of missing teeth.
期刊介绍:
The purpose of The Journal of Clinical Pediatric Dentistry is to provide clinically relevant information to enable the practicing dentist to have access to the state of the art in pediatric dentistry.
From prevention, to information, to the management of different problems encountered in children''s related medical and dental problems, this peer-reviewed journal keeps you abreast of the latest news and developments related to pediatric dentistry.