{"title":"模拟高血糖环境可减轻实验诱导的培养人主动脉瓣间质细胞钙化。","authors":"Arsenii Zabirnyk, Daria Evensen, John-Peder Escobar Kvitting, Mari-Liis Kaljusto, Kåre-Olav Stensløkken, Jarle Vaage","doi":"10.1080/14017431.2024.2353070","DOIUrl":null,"url":null,"abstract":"<p><p><i>Objectives:</i> The role of diabetes mellitus as a risk factor for the development of calcific aortic valve disease has not been fully clarified. Aortic valve interstitial cells (VICs) have been suggested to be crucial for calcification of the valve. Induced calcification in cultured VICs is a good <i>in vitro</i> model for aortic valve calcification. The purpose of this study was to investigate whether increased glucose levels increase experimentally induced calcification in cultured human VICs. <i>Design:</i> VICs were isolated from explanted calcified aortic valves after valve replacement. Osteogenic medium induced calcification of cultured VICs at different glucose levels (5, 15, and 25 mM). Calcium deposits were visualized using Alizarin Red staining and measured spectrophotometrically. <i>Results:</i> The higher the glucose concentration, the lower the level of calcification. High glucose (25 mM) reduced calcification by 52% compared with calcification at a physiological (5 mM) glucose concentration (correlation and regression analysis: <i>r</i> = -0.55, <i>p</i> = .025 with increased concentration of glucose). <i>Conclusions: In vitro</i> hyperglycemia-like conditions attenuated calcification in VICs. High glucose levels may trigger a series of events that secondarily stimulate calcification of VICs <i>in vivo</i>.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hyperglycemia-simulating environment attenuated experimentally induced calcification in cultured human aortic valve interstitial cells.\",\"authors\":\"Arsenii Zabirnyk, Daria Evensen, John-Peder Escobar Kvitting, Mari-Liis Kaljusto, Kåre-Olav Stensløkken, Jarle Vaage\",\"doi\":\"10.1080/14017431.2024.2353070\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><i>Objectives:</i> The role of diabetes mellitus as a risk factor for the development of calcific aortic valve disease has not been fully clarified. Aortic valve interstitial cells (VICs) have been suggested to be crucial for calcification of the valve. Induced calcification in cultured VICs is a good <i>in vitro</i> model for aortic valve calcification. The purpose of this study was to investigate whether increased glucose levels increase experimentally induced calcification in cultured human VICs. <i>Design:</i> VICs were isolated from explanted calcified aortic valves after valve replacement. Osteogenic medium induced calcification of cultured VICs at different glucose levels (5, 15, and 25 mM). Calcium deposits were visualized using Alizarin Red staining and measured spectrophotometrically. <i>Results:</i> The higher the glucose concentration, the lower the level of calcification. High glucose (25 mM) reduced calcification by 52% compared with calcification at a physiological (5 mM) glucose concentration (correlation and regression analysis: <i>r</i> = -0.55, <i>p</i> = .025 with increased concentration of glucose). <i>Conclusions: In vitro</i> hyperglycemia-like conditions attenuated calcification in VICs. High glucose levels may trigger a series of events that secondarily stimulate calcification of VICs <i>in vivo</i>.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/14017431.2024.2353070\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/5/17 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/14017431.2024.2353070","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/17 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Hyperglycemia-simulating environment attenuated experimentally induced calcification in cultured human aortic valve interstitial cells.
Objectives: The role of diabetes mellitus as a risk factor for the development of calcific aortic valve disease has not been fully clarified. Aortic valve interstitial cells (VICs) have been suggested to be crucial for calcification of the valve. Induced calcification in cultured VICs is a good in vitro model for aortic valve calcification. The purpose of this study was to investigate whether increased glucose levels increase experimentally induced calcification in cultured human VICs. Design: VICs were isolated from explanted calcified aortic valves after valve replacement. Osteogenic medium induced calcification of cultured VICs at different glucose levels (5, 15, and 25 mM). Calcium deposits were visualized using Alizarin Red staining and measured spectrophotometrically. Results: The higher the glucose concentration, the lower the level of calcification. High glucose (25 mM) reduced calcification by 52% compared with calcification at a physiological (5 mM) glucose concentration (correlation and regression analysis: r = -0.55, p = .025 with increased concentration of glucose). Conclusions: In vitro hyperglycemia-like conditions attenuated calcification in VICs. High glucose levels may trigger a series of events that secondarily stimulate calcification of VICs in vivo.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.