在干旱和草地竞争条件下,添加森林土壤对阿勒颇松幼苗表现的益处取决于具体情况。

IF 3.3 2区 生物学 Q2 MYCOLOGY
Mycorrhiza Pub Date : 2024-06-01 Epub Date: 2024-05-18 DOI:10.1007/s00572-024-01151-x
Lior Herol, Mor Avidar, Shahar Yirmiahu, Yair Yehoshua Zach, Tamir Klein, Hagai Shemesh, Stav Livne-Luzon
{"title":"在干旱和草地竞争条件下,添加森林土壤对阿勒颇松幼苗表现的益处取决于具体情况。","authors":"Lior Herol, Mor Avidar, Shahar Yirmiahu, Yair Yehoshua Zach, Tamir Klein, Hagai Shemesh, Stav Livne-Luzon","doi":"10.1007/s00572-024-01151-x","DOIUrl":null,"url":null,"abstract":"<p><p>Seedling establishment under natural conditions is limited by numerous interacting factors. Here, we tested the combined effects of drought, herbaceous competition, and ectomycorrhizal inoculation on the performance of Aleppo pine seedlings grown in a net-house. The roots of all pine seedlings were strongly dominated by Geopora, a fungal genus known to colonize seedlings in dry habitats. Ectomycorrhizal fungi (EMF) inoculum significantly increased seedling height, biomass, and the number of side branches. However, under either competition or drought, the positive effect of EMF on seedling biomass and height was greatly reduced, while the effect on shoot branching was maintained. Further, under a combination of drought and competition, EMF had no influence on either plant growth or shape. The discrepancy in pine performance across treatments highlights the complexity of benefits provided to seedlings by EMF under ecologically relevant settings.</p>","PeriodicalId":18965,"journal":{"name":"Mycorrhiza","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11166812/pdf/","citationCount":"0","resultStr":"{\"title\":\"Context-dependent benefits of forest soil addition on Aleppo pine seedling performance under drought and grass competition.\",\"authors\":\"Lior Herol, Mor Avidar, Shahar Yirmiahu, Yair Yehoshua Zach, Tamir Klein, Hagai Shemesh, Stav Livne-Luzon\",\"doi\":\"10.1007/s00572-024-01151-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Seedling establishment under natural conditions is limited by numerous interacting factors. Here, we tested the combined effects of drought, herbaceous competition, and ectomycorrhizal inoculation on the performance of Aleppo pine seedlings grown in a net-house. The roots of all pine seedlings were strongly dominated by Geopora, a fungal genus known to colonize seedlings in dry habitats. Ectomycorrhizal fungi (EMF) inoculum significantly increased seedling height, biomass, and the number of side branches. However, under either competition or drought, the positive effect of EMF on seedling biomass and height was greatly reduced, while the effect on shoot branching was maintained. Further, under a combination of drought and competition, EMF had no influence on either plant growth or shape. The discrepancy in pine performance across treatments highlights the complexity of benefits provided to seedlings by EMF under ecologically relevant settings.</p>\",\"PeriodicalId\":18965,\"journal\":{\"name\":\"Mycorrhiza\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11166812/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mycorrhiza\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s00572-024-01151-x\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/5/18 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"MYCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mycorrhiza","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00572-024-01151-x","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/18 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MYCOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

在自然条件下,幼苗的生长受到许多相互作用因素的限制。在这里,我们测试了干旱、草本植物竞争和外生菌根接种对网室中生长的阿勒颇松幼苗的综合影响。所有松树幼苗的根部都被Geopora强烈支配,Geopora是一种已知会在干燥生境中定植幼苗的真菌属。外生菌根真菌(EMF)接种物显著增加了幼苗的高度、生物量和侧枝数量。然而,在竞争或干旱条件下,EMF 对幼苗生物量和高度的积极影响大大降低,而对幼苗分枝的影响却保持不变。此外,在干旱和竞争的共同作用下,EMF 对植物的生长和形状都没有影响。不同处理下松树表现的差异凸显了在生态相关环境下 EMF 为幼苗带来的益处的复杂性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Context-dependent benefits of forest soil addition on Aleppo pine seedling performance under drought and grass competition.

Context-dependent benefits of forest soil addition on Aleppo pine seedling performance under drought and grass competition.

Seedling establishment under natural conditions is limited by numerous interacting factors. Here, we tested the combined effects of drought, herbaceous competition, and ectomycorrhizal inoculation on the performance of Aleppo pine seedlings grown in a net-house. The roots of all pine seedlings were strongly dominated by Geopora, a fungal genus known to colonize seedlings in dry habitats. Ectomycorrhizal fungi (EMF) inoculum significantly increased seedling height, biomass, and the number of side branches. However, under either competition or drought, the positive effect of EMF on seedling biomass and height was greatly reduced, while the effect on shoot branching was maintained. Further, under a combination of drought and competition, EMF had no influence on either plant growth or shape. The discrepancy in pine performance across treatments highlights the complexity of benefits provided to seedlings by EMF under ecologically relevant settings.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mycorrhiza
Mycorrhiza 生物-真菌学
CiteScore
8.20
自引率
2.60%
发文量
40
审稿时长
6-12 weeks
期刊介绍: Mycorrhiza is an international journal devoted to research into mycorrhizas - the widest symbioses in nature, involving plants and a range of soil fungi world-wide. The scope of Mycorrhiza covers all aspects of research into mycorrhizas, including molecular biology of the plants and fungi, fungal systematics, development and structure of mycorrhizas, and effects on plant physiology, productivity, reproduction and disease resistance. The scope also includes interactions between mycorrhizal fungi and other soil organisms and effects of mycorrhizas on plant biodiversity and ecosystem structure. Mycorrhiza contains original papers, short notes and review articles, along with commentaries and news items. It forms a platform for new concepts and discussions, and is a basis for a truly international forum of mycorrhizologists from all over the world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信