Amany Mohamed Shalaby, Shaimaa Mohamed Abdelfattah Hassan, Hanim Magdy Abdelnour, Sulaiman Mohammed Alnasser, Mohammed Alorini, Fatima A Jaber, Mohamed Ali Alabiad, Asmaa Abdullatif, Mohamed Mahmoud Abdelrahim Elshaer, Seham Ahmed Mohammed Abdel Aziz, Eman M A Abdelghany
{"title":"骨髓间充质干细胞与泼尼松龙对大鼠肺纤维化模型的改善潜力:组织学、免疫组化和生化研究》。","authors":"Amany Mohamed Shalaby, Shaimaa Mohamed Abdelfattah Hassan, Hanim Magdy Abdelnour, Sulaiman Mohammed Alnasser, Mohammed Alorini, Fatima A Jaber, Mohamed Ali Alabiad, Asmaa Abdullatif, Mohamed Mahmoud Abdelrahim Elshaer, Seham Ahmed Mohammed Abdel Aziz, Eman M A Abdelghany","doi":"10.1093/mam/ozae043","DOIUrl":null,"url":null,"abstract":"<p><p>Idiopathic pulmonary fibrosis (IPF) is a progressive lung disease of unknown origin with limited treatment options and poor prognosis. The encouraging findings from preclinical investigations utilizing mesenchymal stem cells (MSCs) indicated that they could serve as a promising therapeutic alternative for managing chronic lung conditions, such as IPF. The objective of this study was to compare the efficiency of bone marrow-derived MSCs (BM-MSCs) versus prednisolone, the standard anti-inflammatory medication, in rats with bleomycin (BLM)-induced lung fibrosis. Four groups were created: a control group, a BLM group, a prednisolone-treated group, and a BM-MSCs-treated group. To induce lung fibrosis, 5 mg/kg of BLM was administered intratracheally. BLM significantly increased serum levels of pro-inflammatory cytokines and oxidative stress markers. The disturbed lung structure was also revealed by light and transmission electron microscopic studies. Upregulation in the immune expression of alpha-smooth muscle actin, transforming growth factor beta-1, and Bax was demonstrated. Interestingly, all findings significantly regressed on treatment with prednisolone and BM-MSCs. However, treatment with BM-MSCs showed better results than with prednisolone. In conclusion, BM-MSCs could be a promising approach for managing lung fibrosis.</p>","PeriodicalId":18625,"journal":{"name":"Microscopy and Microanalysis","volume":" ","pages":"539-551"},"PeriodicalIF":2.9000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ameliorative Potential of Bone Marrow-Derived Mesenchymal Stem Cells Versus Prednisolone in a Rat Model of Lung Fibrosis: A Histological, Immunohistochemical, and Biochemical Study.\",\"authors\":\"Amany Mohamed Shalaby, Shaimaa Mohamed Abdelfattah Hassan, Hanim Magdy Abdelnour, Sulaiman Mohammed Alnasser, Mohammed Alorini, Fatima A Jaber, Mohamed Ali Alabiad, Asmaa Abdullatif, Mohamed Mahmoud Abdelrahim Elshaer, Seham Ahmed Mohammed Abdel Aziz, Eman M A Abdelghany\",\"doi\":\"10.1093/mam/ozae043\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Idiopathic pulmonary fibrosis (IPF) is a progressive lung disease of unknown origin with limited treatment options and poor prognosis. The encouraging findings from preclinical investigations utilizing mesenchymal stem cells (MSCs) indicated that they could serve as a promising therapeutic alternative for managing chronic lung conditions, such as IPF. The objective of this study was to compare the efficiency of bone marrow-derived MSCs (BM-MSCs) versus prednisolone, the standard anti-inflammatory medication, in rats with bleomycin (BLM)-induced lung fibrosis. Four groups were created: a control group, a BLM group, a prednisolone-treated group, and a BM-MSCs-treated group. To induce lung fibrosis, 5 mg/kg of BLM was administered intratracheally. BLM significantly increased serum levels of pro-inflammatory cytokines and oxidative stress markers. The disturbed lung structure was also revealed by light and transmission electron microscopic studies. Upregulation in the immune expression of alpha-smooth muscle actin, transforming growth factor beta-1, and Bax was demonstrated. Interestingly, all findings significantly regressed on treatment with prednisolone and BM-MSCs. However, treatment with BM-MSCs showed better results than with prednisolone. In conclusion, BM-MSCs could be a promising approach for managing lung fibrosis.</p>\",\"PeriodicalId\":18625,\"journal\":{\"name\":\"Microscopy and Microanalysis\",\"volume\":\" \",\"pages\":\"539-551\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microscopy and Microanalysis\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1093/mam/ozae043\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microscopy and Microanalysis","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1093/mam/ozae043","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Ameliorative Potential of Bone Marrow-Derived Mesenchymal Stem Cells Versus Prednisolone in a Rat Model of Lung Fibrosis: A Histological, Immunohistochemical, and Biochemical Study.
Idiopathic pulmonary fibrosis (IPF) is a progressive lung disease of unknown origin with limited treatment options and poor prognosis. The encouraging findings from preclinical investigations utilizing mesenchymal stem cells (MSCs) indicated that they could serve as a promising therapeutic alternative for managing chronic lung conditions, such as IPF. The objective of this study was to compare the efficiency of bone marrow-derived MSCs (BM-MSCs) versus prednisolone, the standard anti-inflammatory medication, in rats with bleomycin (BLM)-induced lung fibrosis. Four groups were created: a control group, a BLM group, a prednisolone-treated group, and a BM-MSCs-treated group. To induce lung fibrosis, 5 mg/kg of BLM was administered intratracheally. BLM significantly increased serum levels of pro-inflammatory cytokines and oxidative stress markers. The disturbed lung structure was also revealed by light and transmission electron microscopic studies. Upregulation in the immune expression of alpha-smooth muscle actin, transforming growth factor beta-1, and Bax was demonstrated. Interestingly, all findings significantly regressed on treatment with prednisolone and BM-MSCs. However, treatment with BM-MSCs showed better results than with prednisolone. In conclusion, BM-MSCs could be a promising approach for managing lung fibrosis.
期刊介绍:
Microscopy and Microanalysis publishes original research papers in the fields of microscopy, imaging, and compositional analysis. This distinguished international forum is intended for microscopists in both biology and materials science. The journal provides significant articles that describe new and existing techniques and instrumentation, as well as the applications of these to the imaging and analysis of microstructure. Microscopy and Microanalysis also includes review articles, letters to the editor, and book reviews.