{"title":"多发性硬化症的认知障碍:从现象学到神经生物学机制。","authors":"Kurt A Jellinger","doi":"10.1007/s00702-024-02786-y","DOIUrl":null,"url":null,"abstract":"<p><p>Multiple sclerosis (MS) is an autoimmune-mediated disease of the central nervous system characterized by inflammation, demyelination and chronic progressive neurodegeneration. Among its broad and unpredictable range of clinical symptoms, cognitive impairment (CI) is a common and disabling feature greatly affecting the patients' quality of life. Its prevalence is 20% up to 88% with a wide variety depending on the phenotype of MS, with highest frequency and severity in primary progressive MS. Involving different cognitive domains, CI is often associated with depression and other neuropsychiatric symptoms, but usually not correlated with motor and other deficits, suggesting different pathophysiological mechanisms. While no specific neuropathological data for CI in MS are available, modern research has provided evidence that it arises from the disease-specific brain alterations. Multimodal neuroimaging, besides structural changes of cortical and deep subcortical gray and white matter, exhibited dysfunction of fronto-parietal, thalamo-hippocampal, default mode and cognition-related networks, disruption of inter-network connections and involvement of the γ-aminobutyric acid (GABA) system. This provided a conceptual framework to explain how aberrant pathophysiological processes, including oxidative stress, mitochondrial dysfunction, autoimmune reactions and disruption of essential signaling pathways predict/cause specific disorders of cognition. CI in MS is related to multi-regional patterns of cerebral disturbances, although its complex pathogenic mechanisms await further elucidation. This article, based on systematic analysis of PubMed, Google Scholar and Cochrane Library, reviews current epidemiological, clinical, neuroimaging and pathogenetic evidence that could aid early identification of CI in MS and inform about new therapeutic targets and strategies.</p>","PeriodicalId":16579,"journal":{"name":"Journal of Neural Transmission","volume":" ","pages":"871-899"},"PeriodicalIF":3.2000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cognitive impairment in multiple sclerosis: from phenomenology to neurobiological mechanisms.\",\"authors\":\"Kurt A Jellinger\",\"doi\":\"10.1007/s00702-024-02786-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Multiple sclerosis (MS) is an autoimmune-mediated disease of the central nervous system characterized by inflammation, demyelination and chronic progressive neurodegeneration. Among its broad and unpredictable range of clinical symptoms, cognitive impairment (CI) is a common and disabling feature greatly affecting the patients' quality of life. Its prevalence is 20% up to 88% with a wide variety depending on the phenotype of MS, with highest frequency and severity in primary progressive MS. Involving different cognitive domains, CI is often associated with depression and other neuropsychiatric symptoms, but usually not correlated with motor and other deficits, suggesting different pathophysiological mechanisms. While no specific neuropathological data for CI in MS are available, modern research has provided evidence that it arises from the disease-specific brain alterations. Multimodal neuroimaging, besides structural changes of cortical and deep subcortical gray and white matter, exhibited dysfunction of fronto-parietal, thalamo-hippocampal, default mode and cognition-related networks, disruption of inter-network connections and involvement of the γ-aminobutyric acid (GABA) system. This provided a conceptual framework to explain how aberrant pathophysiological processes, including oxidative stress, mitochondrial dysfunction, autoimmune reactions and disruption of essential signaling pathways predict/cause specific disorders of cognition. CI in MS is related to multi-regional patterns of cerebral disturbances, although its complex pathogenic mechanisms await further elucidation. This article, based on systematic analysis of PubMed, Google Scholar and Cochrane Library, reviews current epidemiological, clinical, neuroimaging and pathogenetic evidence that could aid early identification of CI in MS and inform about new therapeutic targets and strategies.</p>\",\"PeriodicalId\":16579,\"journal\":{\"name\":\"Journal of Neural Transmission\",\"volume\":\" \",\"pages\":\"871-899\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Neural Transmission\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s00702-024-02786-y\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/5/18 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neural Transmission","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00702-024-02786-y","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/18 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
Cognitive impairment in multiple sclerosis: from phenomenology to neurobiological mechanisms.
Multiple sclerosis (MS) is an autoimmune-mediated disease of the central nervous system characterized by inflammation, demyelination and chronic progressive neurodegeneration. Among its broad and unpredictable range of clinical symptoms, cognitive impairment (CI) is a common and disabling feature greatly affecting the patients' quality of life. Its prevalence is 20% up to 88% with a wide variety depending on the phenotype of MS, with highest frequency and severity in primary progressive MS. Involving different cognitive domains, CI is often associated with depression and other neuropsychiatric symptoms, but usually not correlated with motor and other deficits, suggesting different pathophysiological mechanisms. While no specific neuropathological data for CI in MS are available, modern research has provided evidence that it arises from the disease-specific brain alterations. Multimodal neuroimaging, besides structural changes of cortical and deep subcortical gray and white matter, exhibited dysfunction of fronto-parietal, thalamo-hippocampal, default mode and cognition-related networks, disruption of inter-network connections and involvement of the γ-aminobutyric acid (GABA) system. This provided a conceptual framework to explain how aberrant pathophysiological processes, including oxidative stress, mitochondrial dysfunction, autoimmune reactions and disruption of essential signaling pathways predict/cause specific disorders of cognition. CI in MS is related to multi-regional patterns of cerebral disturbances, although its complex pathogenic mechanisms await further elucidation. This article, based on systematic analysis of PubMed, Google Scholar and Cochrane Library, reviews current epidemiological, clinical, neuroimaging and pathogenetic evidence that could aid early identification of CI in MS and inform about new therapeutic targets and strategies.
期刊介绍:
The investigation of basic mechanisms involved in the pathogenesis of neurological and psychiatric disorders has undoubtedly deepened our knowledge of these types of disorders. The impact of basic neurosciences on the understanding of the pathophysiology of the brain will further increase due to important developments such as the emergence of more specific psychoactive compounds and new technologies.
The Journal of Neural Transmission aims to establish an interface between basic sciences and clinical neurology and psychiatry. It intends to put a special emphasis on translational publications of the newest developments in the field from all disciplines of the neural sciences that relate to a better understanding and treatment of neurological and psychiatric disorders.