Aiste Steponenaite, Tatjana Lalic, Lynsey Atkinson, Neil Tanday, Lorna Brown, Alistair Mathie, Zameel M Cader, Gurprit S Lall
{"title":"TASK-3是一种双孔钾通道,它有助于调节嗜铬细胞上核电特性的昼夜节律,并在驱动稳定的行为光诱导方面发挥作用。","authors":"Aiste Steponenaite, Tatjana Lalic, Lynsey Atkinson, Neil Tanday, Lorna Brown, Alistair Mathie, Zameel M Cader, Gurprit S Lall","doi":"10.1080/07420528.2024.2351515","DOIUrl":null,"url":null,"abstract":"<p><p>Stable and entrainable physiological circadian rhythms are crucial for overall health and well-being. The suprachiasmatic nucleus (SCN), the primary circadian pacemaker in mammals, consists of diverse neuron types that collectively generate a circadian profile of electrical activity. However, the mechanisms underlying the regulation of endogenous neuronal excitability in the SCN remain unclear. Two-pore domain potassium channels (K2P), including TASK-3, are known to play a significant role in maintaining SCN diurnal homeostasis by inhibiting neuronal activity at night. In this study, we investigated the role of TASK-3 in SCN circadian neuronal regulation and behavioural photoentrainment using a TASK-3 global knockout mouse model. Our findings demonstrate the importance of TASK-3 in maintaining SCN hyperpolarization during the night and establishing SCN sensitivity to glutamate. Specifically, we observed that TASK-3 knockout mice lacked diurnal variation in resting membrane potential and exhibited altered glutamate sensitivity both in vivo and in vitro. Interestingly, despite these changes, the mice lacking TASK-3 were still able to maintain relatively normal circadian behaviour.</p>","PeriodicalId":10294,"journal":{"name":"Chronobiology International","volume":" ","pages":"802-816"},"PeriodicalIF":2.2000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"TASK-3, two-pore potassium channels, contribute to circadian rhythms in the electrical properties of the suprachiasmatic nucleus and play a role in driving stable behavioural photic entrainment.\",\"authors\":\"Aiste Steponenaite, Tatjana Lalic, Lynsey Atkinson, Neil Tanday, Lorna Brown, Alistair Mathie, Zameel M Cader, Gurprit S Lall\",\"doi\":\"10.1080/07420528.2024.2351515\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Stable and entrainable physiological circadian rhythms are crucial for overall health and well-being. The suprachiasmatic nucleus (SCN), the primary circadian pacemaker in mammals, consists of diverse neuron types that collectively generate a circadian profile of electrical activity. However, the mechanisms underlying the regulation of endogenous neuronal excitability in the SCN remain unclear. Two-pore domain potassium channels (K2P), including TASK-3, are known to play a significant role in maintaining SCN diurnal homeostasis by inhibiting neuronal activity at night. In this study, we investigated the role of TASK-3 in SCN circadian neuronal regulation and behavioural photoentrainment using a TASK-3 global knockout mouse model. Our findings demonstrate the importance of TASK-3 in maintaining SCN hyperpolarization during the night and establishing SCN sensitivity to glutamate. Specifically, we observed that TASK-3 knockout mice lacked diurnal variation in resting membrane potential and exhibited altered glutamate sensitivity both in vivo and in vitro. Interestingly, despite these changes, the mice lacking TASK-3 were still able to maintain relatively normal circadian behaviour.</p>\",\"PeriodicalId\":10294,\"journal\":{\"name\":\"Chronobiology International\",\"volume\":\" \",\"pages\":\"802-816\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chronobiology International\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/07420528.2024.2351515\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/5/17 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chronobiology International","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/07420528.2024.2351515","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/17 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
TASK-3, two-pore potassium channels, contribute to circadian rhythms in the electrical properties of the suprachiasmatic nucleus and play a role in driving stable behavioural photic entrainment.
Stable and entrainable physiological circadian rhythms are crucial for overall health and well-being. The suprachiasmatic nucleus (SCN), the primary circadian pacemaker in mammals, consists of diverse neuron types that collectively generate a circadian profile of electrical activity. However, the mechanisms underlying the regulation of endogenous neuronal excitability in the SCN remain unclear. Two-pore domain potassium channels (K2P), including TASK-3, are known to play a significant role in maintaining SCN diurnal homeostasis by inhibiting neuronal activity at night. In this study, we investigated the role of TASK-3 in SCN circadian neuronal regulation and behavioural photoentrainment using a TASK-3 global knockout mouse model. Our findings demonstrate the importance of TASK-3 in maintaining SCN hyperpolarization during the night and establishing SCN sensitivity to glutamate. Specifically, we observed that TASK-3 knockout mice lacked diurnal variation in resting membrane potential and exhibited altered glutamate sensitivity both in vivo and in vitro. Interestingly, despite these changes, the mice lacking TASK-3 were still able to maintain relatively normal circadian behaviour.
期刊介绍:
Chronobiology International is the journal of biological and medical rhythm research. It is a transdisciplinary journal focusing on biological rhythm phenomena of all life forms. The journal publishes groundbreaking articles plus authoritative review papers, short communications of work in progress, case studies, and letters to the editor, for example, on genetic and molecular mechanisms of insect, animal and human biological timekeeping, including melatonin and pineal gland rhythms. It also publishes applied topics, for example, shiftwork, chronotypes, and associated personality traits; chronobiology and chronotherapy of sleep, cardiovascular, pulmonary, psychiatric, and other medical conditions. Articles in the journal pertain to basic and applied chronobiology, and to methods, statistics, and instrumentation for biological rhythm study.
Read More: http://informahealthcare.com/page/cbi/Description