氟通过破坏溶酶体铁代谢和膜渗透性诱发神经细胞毒性

IF 3.4 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Biological Trace Element Research Pub Date : 2025-02-01 Epub Date: 2024-05-18 DOI:10.1007/s12011-024-04226-0
Panpan Xu, Hengrui Xing, Yue Ma, Xueman Ding, Tingting Li, Yue Zhang, Li Liu, Jiaolong Ma, Qiang Niu
{"title":"氟通过破坏溶酶体铁代谢和膜渗透性诱发神经细胞毒性","authors":"Panpan Xu, Hengrui Xing, Yue Ma, Xueman Ding, Tingting Li, Yue Zhang, Li Liu, Jiaolong Ma, Qiang Niu","doi":"10.1007/s12011-024-04226-0","DOIUrl":null,"url":null,"abstract":"<p><p>The detrimental effects of fluoride on neurotoxicity have been widely recorded, yet the detailed mechanisms underlying these effects remain unclear. This study explores lysosomal iron metabolism in fluoride-related neurotoxicity, with a focus on the Steap3/TRPML1 axis. Utilizing sodium fluoride (NaF)-treated human neuroblastoma (SH-SY5Y) and mouse hippocampal neuron (HT22) cell lines, our research demonstrates that NaF enhances the accumulation of ferrous ions (Fe<sup>2+</sup>) in these cells, disrupting lysosomal iron metabolism through the Steap3/TRPML1 axis. Notably, NaF exposure upregulated ACSL4 and downregulated GPX4, accompanied by reduced glutathione (GSH) levels and superoxide dismutase (SOD) activity and increased malondialdehyde (MDA) levels. These changes indicate increased vulnerability to ferroptosis within neuronal cells. The iron chelator deferoxamine (DFO) mitigates this disruption. DFO binds to lysosomal Fe<sup>2+</sup> and inhibits the Steap3/TRPML1 axis, restoring normal lysosomal iron metabolism, preventing lysosomal membrane permeabilization (LMP), and reducing neuronal cell ferroptosis. Our findings suggest that interference in lysosomal iron metabolism may mitigate fluoride-induced neurotoxicity, underscoring the critical role of the Steap3/TRPML1 axis in this pathological process.</p>","PeriodicalId":8917,"journal":{"name":"Biological Trace Element Research","volume":" ","pages":"835-849"},"PeriodicalIF":3.4000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fluoride Induces Neurocytotoxicity by Disrupting Lysosomal Iron Metabolism and Membrane Permeability.\",\"authors\":\"Panpan Xu, Hengrui Xing, Yue Ma, Xueman Ding, Tingting Li, Yue Zhang, Li Liu, Jiaolong Ma, Qiang Niu\",\"doi\":\"10.1007/s12011-024-04226-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The detrimental effects of fluoride on neurotoxicity have been widely recorded, yet the detailed mechanisms underlying these effects remain unclear. This study explores lysosomal iron metabolism in fluoride-related neurotoxicity, with a focus on the Steap3/TRPML1 axis. Utilizing sodium fluoride (NaF)-treated human neuroblastoma (SH-SY5Y) and mouse hippocampal neuron (HT22) cell lines, our research demonstrates that NaF enhances the accumulation of ferrous ions (Fe<sup>2+</sup>) in these cells, disrupting lysosomal iron metabolism through the Steap3/TRPML1 axis. Notably, NaF exposure upregulated ACSL4 and downregulated GPX4, accompanied by reduced glutathione (GSH) levels and superoxide dismutase (SOD) activity and increased malondialdehyde (MDA) levels. These changes indicate increased vulnerability to ferroptosis within neuronal cells. The iron chelator deferoxamine (DFO) mitigates this disruption. DFO binds to lysosomal Fe<sup>2+</sup> and inhibits the Steap3/TRPML1 axis, restoring normal lysosomal iron metabolism, preventing lysosomal membrane permeabilization (LMP), and reducing neuronal cell ferroptosis. Our findings suggest that interference in lysosomal iron metabolism may mitigate fluoride-induced neurotoxicity, underscoring the critical role of the Steap3/TRPML1 axis in this pathological process.</p>\",\"PeriodicalId\":8917,\"journal\":{\"name\":\"Biological Trace Element Research\",\"volume\":\" \",\"pages\":\"835-849\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biological Trace Element Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s12011-024-04226-0\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/5/18 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological Trace Element Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12011-024-04226-0","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/18 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

氟对神经毒性的有害影响已被广泛记录,但这些影响的详细机制仍不清楚。本研究探讨了氟相关神经毒性中的溶酶体铁代谢,重点是 Steap3/TRPML1 轴。利用经氟化钠(NaF)处理的人神经母细胞瘤(SH-SY5Y)和小鼠海马神经元(HT22)细胞系,我们的研究表明,NaF会增强亚铁离子(Fe2+)在这些细胞中的积累,通过Steap3/TRPML1轴干扰溶酶体铁代谢。值得注意的是,NaF 暴露会上调 ACSL4,下调 GPX4,同时谷胱甘肽(GSH)水平和超氧化物歧化酶(SOD)活性降低,丙二醛(MDA)水平升高。这些变化表明神经元细胞更容易发生铁中毒。铁螯合剂去铁胺(DFO)可减轻这种破坏。DFO 与溶酶体中的 Fe2+ 结合,抑制 Steap3/TRPML1 轴,恢复正常的溶酶体铁代谢,防止溶酶体膜渗透(LMP),减少神经元细胞的铁突变。我们的研究结果表明,对溶酶体铁代谢的干扰可减轻氟化物诱导的神经毒性,从而强调了 Steap3/TRPML1 轴在这一病理过程中的关键作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Fluoride Induces Neurocytotoxicity by Disrupting Lysosomal Iron Metabolism and Membrane Permeability.

Fluoride Induces Neurocytotoxicity by Disrupting Lysosomal Iron Metabolism and Membrane Permeability.

The detrimental effects of fluoride on neurotoxicity have been widely recorded, yet the detailed mechanisms underlying these effects remain unclear. This study explores lysosomal iron metabolism in fluoride-related neurotoxicity, with a focus on the Steap3/TRPML1 axis. Utilizing sodium fluoride (NaF)-treated human neuroblastoma (SH-SY5Y) and mouse hippocampal neuron (HT22) cell lines, our research demonstrates that NaF enhances the accumulation of ferrous ions (Fe2+) in these cells, disrupting lysosomal iron metabolism through the Steap3/TRPML1 axis. Notably, NaF exposure upregulated ACSL4 and downregulated GPX4, accompanied by reduced glutathione (GSH) levels and superoxide dismutase (SOD) activity and increased malondialdehyde (MDA) levels. These changes indicate increased vulnerability to ferroptosis within neuronal cells. The iron chelator deferoxamine (DFO) mitigates this disruption. DFO binds to lysosomal Fe2+ and inhibits the Steap3/TRPML1 axis, restoring normal lysosomal iron metabolism, preventing lysosomal membrane permeabilization (LMP), and reducing neuronal cell ferroptosis. Our findings suggest that interference in lysosomal iron metabolism may mitigate fluoride-induced neurotoxicity, underscoring the critical role of the Steap3/TRPML1 axis in this pathological process.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biological Trace Element Research
Biological Trace Element Research 生物-内分泌学与代谢
CiteScore
8.70
自引率
10.30%
发文量
459
审稿时长
2 months
期刊介绍: Biological Trace Element Research provides a much-needed central forum for the emergent, interdisciplinary field of research on the biological, environmental, and biomedical roles of trace elements. Rather than confine itself to biochemistry, the journal emphasizes the integrative aspects of trace metal research in all appropriate fields, publishing human and animal nutritional studies devoted to the fundamental chemistry and biochemistry at issue as well as to the elucidation of the relevant aspects of preventive medicine, epidemiology, clinical chemistry, agriculture, endocrinology, animal science, pharmacology, microbiology, toxicology, virology, marine biology, sensory physiology, developmental biology, and related fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信