非热等离子体辅助增强 NiOx/γ-Al2O3 催化剂的二氧化碳转化能力

IF 3.9 3区 工程技术 Q2 ENGINEERING, CHEMICAL
Mudadla Umamaheswara Rao, Devthade Vidyasagar, Chandan Ghanty*, Mohd Zafar Iqbal, KVSS Bhargavi, Partha Ghosal, Giridhar Madras and Challapalli Subrahmanyam*, 
{"title":"非热等离子体辅助增强 NiOx/γ-Al2O3 催化剂的二氧化碳转化能力","authors":"Mudadla Umamaheswara Rao,&nbsp;Devthade Vidyasagar,&nbsp;Chandan Ghanty*,&nbsp;Mohd Zafar Iqbal,&nbsp;KVSS Bhargavi,&nbsp;Partha Ghosal,&nbsp;Giridhar Madras and Challapalli Subrahmanyam*,&nbsp;","doi":"10.1021/acs.iecr.4c00489","DOIUrl":null,"url":null,"abstract":"<p >The utilization of the dielectric barrier discharge (DBD) plasma process presents a promising avenue for transforming carbon dioxide (CO<sub>2</sub>) into valuable compounds. In this research, we explore the integration of DBD plasma with a NiO<sub><i>x</i></sub>/γ-Al<sub>2</sub>O<sub>3</sub> catalyst to amplify the efficiency and selectivity of the conversion of CO<sub>2</sub> into carbon monoxide (CO). A series of NiO<sub><i>x</i></sub>-loaded on γ-Al<sub>2</sub>O<sub>3</sub> catalysts were synthesized through wet impregnation and employed in the DBD plasma reactor. The synergy between nonthermal plasma and NiO<sub><i>x</i></sub>/γ-Al<sub>2</sub>O<sub>3</sub> resulted in a significant enhancement in CO<sub>2</sub> conversion, particularly demonstrating a notable increase in the energy content of produced carbon monoxide (CO). Enhanced conversion rates and selectivities were observed. Notably, the NiO<sub><i>x</i></sub>/γ-Al<sub>2</sub>O<sub>3</sub> catalyst with a 15 wt % loading exhibited the highest CO<sub>2</sub> conversion of approximately ∼9% at an applied voltage of 22 kV, accompanied by an energy efficiency of 1.13 mmol kJ<sup>–1</sup>. This study provides a comprehensive analysis of the impact of plasma catalyst coupling on CO<sub>2</sub> conversion into CO, showcasing the potential of hybrid DBD reactor systems for large-scale CO<sub>2</sub> conversion and contributing to sustainable and value-added fuel production. The superior performance of the hybridized system is attributed to enhanced charge deposition and modified gas-phase chemistry resulting from the integration of the catalyst. Furthermore, we employed BOLSIG+ software to calculate the mean electron energy and electron energy distribution function for different packing conditions, enhancing our understanding of the system’s behavior and contributing valuable insights to the overall study.</p>","PeriodicalId":39,"journal":{"name":"Industrial & Engineering Chemistry Research","volume":"63 21","pages":"9336–9346"},"PeriodicalIF":3.9000,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nonthermal Plasma-Assisted Enhanced CO2 Conversion over NiOx/γ-Al2O3 Catalyst\",\"authors\":\"Mudadla Umamaheswara Rao,&nbsp;Devthade Vidyasagar,&nbsp;Chandan Ghanty*,&nbsp;Mohd Zafar Iqbal,&nbsp;KVSS Bhargavi,&nbsp;Partha Ghosal,&nbsp;Giridhar Madras and Challapalli Subrahmanyam*,&nbsp;\",\"doi\":\"10.1021/acs.iecr.4c00489\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The utilization of the dielectric barrier discharge (DBD) plasma process presents a promising avenue for transforming carbon dioxide (CO<sub>2</sub>) into valuable compounds. In this research, we explore the integration of DBD plasma with a NiO<sub><i>x</i></sub>/γ-Al<sub>2</sub>O<sub>3</sub> catalyst to amplify the efficiency and selectivity of the conversion of CO<sub>2</sub> into carbon monoxide (CO). A series of NiO<sub><i>x</i></sub>-loaded on γ-Al<sub>2</sub>O<sub>3</sub> catalysts were synthesized through wet impregnation and employed in the DBD plasma reactor. The synergy between nonthermal plasma and NiO<sub><i>x</i></sub>/γ-Al<sub>2</sub>O<sub>3</sub> resulted in a significant enhancement in CO<sub>2</sub> conversion, particularly demonstrating a notable increase in the energy content of produced carbon monoxide (CO). Enhanced conversion rates and selectivities were observed. Notably, the NiO<sub><i>x</i></sub>/γ-Al<sub>2</sub>O<sub>3</sub> catalyst with a 15 wt % loading exhibited the highest CO<sub>2</sub> conversion of approximately ∼9% at an applied voltage of 22 kV, accompanied by an energy efficiency of 1.13 mmol kJ<sup>–1</sup>. This study provides a comprehensive analysis of the impact of plasma catalyst coupling on CO<sub>2</sub> conversion into CO, showcasing the potential of hybrid DBD reactor systems for large-scale CO<sub>2</sub> conversion and contributing to sustainable and value-added fuel production. The superior performance of the hybridized system is attributed to enhanced charge deposition and modified gas-phase chemistry resulting from the integration of the catalyst. Furthermore, we employed BOLSIG+ software to calculate the mean electron energy and electron energy distribution function for different packing conditions, enhancing our understanding of the system’s behavior and contributing valuable insights to the overall study.</p>\",\"PeriodicalId\":39,\"journal\":{\"name\":\"Industrial & Engineering Chemistry Research\",\"volume\":\"63 21\",\"pages\":\"9336–9346\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Industrial & Engineering Chemistry Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.iecr.4c00489\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Industrial & Engineering Chemistry Research","FirstCategoryId":"5","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.iecr.4c00489","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

利用介质阻挡放电(DBD)等离子体工艺将二氧化碳(CO2)转化为有价值的化合物是一条前景广阔的途径。在这项研究中,我们探讨了如何将 DBD 等离子体与 NiOx/γ-Al2O3 催化剂相结合,以提高二氧化碳转化为一氧化碳 (CO) 的效率和选择性。通过湿法浸渍合成了一系列负载在 γ-Al2O3 上的 NiOx 催化剂,并将其应用于 DBD 等离子体反应器中。非热等离子体与 NiOx/γ-Al2O3 的协同作用显著提高了二氧化碳的转化率,尤其是生成的一氧化碳 (CO) 的能量含量明显增加。转化率和选择性也得到了提高。值得注意的是,负载量为 15 wt % 的 NiOx/γ-Al2O3 催化剂在 22 kV 的应用电压下表现出最高的二氧化碳转化率,约为∼9%,能量效率为 1.13 mmol kJ-1。这项研究全面分析了等离子体催化剂耦合对 CO2 转化为 CO 的影响,展示了混合 DBD 反应器系统在大规模 CO2 转化方面的潜力,有助于实现可持续的增值燃料生产。混合系统的优越性能归因于催化剂的集成增强了电荷沉积并改变了气相化学性质。此外,我们还利用 BOLSIG+ 软件计算了不同填料条件下的平均电子能量和电子能量分布函数,从而加深了我们对系统行为的理解,并为整个研究提供了宝贵的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Nonthermal Plasma-Assisted Enhanced CO2 Conversion over NiOx/γ-Al2O3 Catalyst

Nonthermal Plasma-Assisted Enhanced CO2 Conversion over NiOx/γ-Al2O3 Catalyst

Nonthermal Plasma-Assisted Enhanced CO2 Conversion over NiOx/γ-Al2O3 Catalyst

The utilization of the dielectric barrier discharge (DBD) plasma process presents a promising avenue for transforming carbon dioxide (CO2) into valuable compounds. In this research, we explore the integration of DBD plasma with a NiOx/γ-Al2O3 catalyst to amplify the efficiency and selectivity of the conversion of CO2 into carbon monoxide (CO). A series of NiOx-loaded on γ-Al2O3 catalysts were synthesized through wet impregnation and employed in the DBD plasma reactor. The synergy between nonthermal plasma and NiOx/γ-Al2O3 resulted in a significant enhancement in CO2 conversion, particularly demonstrating a notable increase in the energy content of produced carbon monoxide (CO). Enhanced conversion rates and selectivities were observed. Notably, the NiOx/γ-Al2O3 catalyst with a 15 wt % loading exhibited the highest CO2 conversion of approximately ∼9% at an applied voltage of 22 kV, accompanied by an energy efficiency of 1.13 mmol kJ–1. This study provides a comprehensive analysis of the impact of plasma catalyst coupling on CO2 conversion into CO, showcasing the potential of hybrid DBD reactor systems for large-scale CO2 conversion and contributing to sustainable and value-added fuel production. The superior performance of the hybridized system is attributed to enhanced charge deposition and modified gas-phase chemistry resulting from the integration of the catalyst. Furthermore, we employed BOLSIG+ software to calculate the mean electron energy and electron energy distribution function for different packing conditions, enhancing our understanding of the system’s behavior and contributing valuable insights to the overall study.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Industrial & Engineering Chemistry Research
Industrial & Engineering Chemistry Research 工程技术-工程:化工
CiteScore
7.40
自引率
7.10%
发文量
1467
审稿时长
2.8 months
期刊介绍: ndustrial & Engineering Chemistry, with variations in title and format, has been published since 1909 by the American Chemical Society. Industrial & Engineering Chemistry Research is a weekly publication that reports industrial and academic research in the broad fields of applied chemistry and chemical engineering with special focus on fundamentals, processes, and products.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信