Dawei Xiang , Rong Zhu , Yuefeng Chen , Manying Zhu , Shixing Wang , Yihui Wu , Jiaxin Luo , Likang Fu
{"title":"制备脒肟修饰共价有机框架以高效吸附水溶液中的铅离子","authors":"Dawei Xiang , Rong Zhu , Yuefeng Chen , Manying Zhu , Shixing Wang , Yihui Wu , Jiaxin Luo , Likang Fu","doi":"10.1016/j.cej.2024.152292","DOIUrl":null,"url":null,"abstract":"<div><p>Lead ion is one of the most common heavy metal contaminants for human health. Therefore, it is necessary to develop the efficient and selective adsorbents to remove lead ions in wastewater. Here, an amidoximated covalent organic framework was designed as adsorbent (COF-NHOH) for the removal of lead ions from aqueous solutions. The adsorption properties were studied by batch adsorption. The adsorption process is quickly completed in just 30 min. The highest adsorption capacity of the COF-NHOH is 368.68 mg/g at 298 K, which is much higher than that of JUC-500. Kinetic, isotherm and thermodynamic results show that the adsorption process is a spontaneous monolayer chemical adsorption process. The adsorbent removes selectively lead ions from a complex multi-ion environment. Moreover, the adsorption ability of the adsorbent decreased by only 14.05 % after five cycle experiments. COF-NHOH exhibits excellent anti-interference ability and reusability. Finally, COF-NHOH achieves efficient removal of lead ions through chelation and electrostatic action based on DFT calculations and others. In conclusion, the adsorbent showed excellent application for the removal of lead ions from aqueous solutions.</p></div>","PeriodicalId":270,"journal":{"name":"Chemical Engineering Journal","volume":"492 ","pages":"Article 152292"},"PeriodicalIF":13.3000,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Preparation of amidoxime modified covalent organic framework for efficient adsorption of lead ions in aqueous solution\",\"authors\":\"Dawei Xiang , Rong Zhu , Yuefeng Chen , Manying Zhu , Shixing Wang , Yihui Wu , Jiaxin Luo , Likang Fu\",\"doi\":\"10.1016/j.cej.2024.152292\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Lead ion is one of the most common heavy metal contaminants for human health. Therefore, it is necessary to develop the efficient and selective adsorbents to remove lead ions in wastewater. Here, an amidoximated covalent organic framework was designed as adsorbent (COF-NHOH) for the removal of lead ions from aqueous solutions. The adsorption properties were studied by batch adsorption. The adsorption process is quickly completed in just 30 min. The highest adsorption capacity of the COF-NHOH is 368.68 mg/g at 298 K, which is much higher than that of JUC-500. Kinetic, isotherm and thermodynamic results show that the adsorption process is a spontaneous monolayer chemical adsorption process. The adsorbent removes selectively lead ions from a complex multi-ion environment. Moreover, the adsorption ability of the adsorbent decreased by only 14.05 % after five cycle experiments. COF-NHOH exhibits excellent anti-interference ability and reusability. Finally, COF-NHOH achieves efficient removal of lead ions through chelation and electrostatic action based on DFT calculations and others. In conclusion, the adsorbent showed excellent application for the removal of lead ions from aqueous solutions.</p></div>\",\"PeriodicalId\":270,\"journal\":{\"name\":\"Chemical Engineering Journal\",\"volume\":\"492 \",\"pages\":\"Article 152292\"},\"PeriodicalIF\":13.3000,\"publicationDate\":\"2024-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Engineering Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1385894724037793\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering Journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1385894724037793","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Preparation of amidoxime modified covalent organic framework for efficient adsorption of lead ions in aqueous solution
Lead ion is one of the most common heavy metal contaminants for human health. Therefore, it is necessary to develop the efficient and selective adsorbents to remove lead ions in wastewater. Here, an amidoximated covalent organic framework was designed as adsorbent (COF-NHOH) for the removal of lead ions from aqueous solutions. The adsorption properties were studied by batch adsorption. The adsorption process is quickly completed in just 30 min. The highest adsorption capacity of the COF-NHOH is 368.68 mg/g at 298 K, which is much higher than that of JUC-500. Kinetic, isotherm and thermodynamic results show that the adsorption process is a spontaneous monolayer chemical adsorption process. The adsorbent removes selectively lead ions from a complex multi-ion environment. Moreover, the adsorption ability of the adsorbent decreased by only 14.05 % after five cycle experiments. COF-NHOH exhibits excellent anti-interference ability and reusability. Finally, COF-NHOH achieves efficient removal of lead ions through chelation and electrostatic action based on DFT calculations and others. In conclusion, the adsorbent showed excellent application for the removal of lead ions from aqueous solutions.
期刊介绍:
The Chemical Engineering Journal is an international research journal that invites contributions of original and novel fundamental research. It aims to provide an international platform for presenting original fundamental research, interpretative reviews, and discussions on new developments in chemical engineering. The journal welcomes papers that describe novel theory and its practical application, as well as those that demonstrate the transfer of techniques from other disciplines. It also welcomes reports on carefully conducted experimental work that is soundly interpreted. The main focus of the journal is on original and rigorous research results that have broad significance. The Catalysis section within the Chemical Engineering Journal focuses specifically on Experimental and Theoretical studies in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. These studies have industrial impact on various sectors such as chemicals, energy, materials, foods, healthcare, and environmental protection.