Katrine Top Hartmann , Regitze Lund Nielsen , Freja Cecilie Mikkelsen , Bent Aalbæk , Mads Lichtenberg , Tim Holm Jakobsen , Thomas Bjarnsholt , Lasse Kvich , Hanne Ingmer , Anders Odgaard , Henrik Elvang Jensen , Louise Kruse Jensen
{"title":"细菌微聚集体作为植入相关感染动物模型的接种体","authors":"Katrine Top Hartmann , Regitze Lund Nielsen , Freja Cecilie Mikkelsen , Bent Aalbæk , Mads Lichtenberg , Tim Holm Jakobsen , Thomas Bjarnsholt , Lasse Kvich , Hanne Ingmer , Anders Odgaard , Henrik Elvang Jensen , Louise Kruse Jensen","doi":"10.1016/j.bioflm.2024.100200","DOIUrl":null,"url":null,"abstract":"<div><p>Is it time to rethink the inoculum of animal models of implant-associated infections (IAI)? Traditionally, animal models of IAI are based on inoculation with metabolically active overnight cultures of planktonic bacteria or pre-grown surface-attached biofilms. However, such inoculums do not mimic the clinical initiation of IAI. Therefore, the present study aimed to develop a clinically relevant inoculum of low metabolic micro-aggregated bacteria. The porcine <em>Staphylococcus aureus</em> strain S54F9 was cultured in Tryptone Soya Broth (TSB) for seven days to facilitate the formation of low metabolic micro-aggregates. Subsequently, the aggregated culture underwent filtration using cell strainers of different pore sizes to separate micro-aggregates. Light microscopy was used to evaluate the aggregate formation and size in the different fractions, while isothermal microcalorimetry was used to disclose a low metabolic activity. The micro-aggregate fraction obtained with filter size 5–15 μm (actual measured mean size 32 μm) was used as inoculum in a porcine implant-associated osteomyelitis (IAO) model and compared to a standard overnight planktonic inoculum and a sham inoculum of 0.9 % saline. The micro-aggregate and planktonic inoculums caused IAO with the re-isolation of <em>S. aureus</em> from soft tissues, bones, and implants. However, compared to their planktonic counterpart, neither of the micro-aggregate inoculated animals showed signs of osteomyelitis, i.e., sequester, osteolysis, and pus at gross inspection. Furthermore, inoculation with low metabolic micro-aggregates resulted in a strong healing response with pronounced osteoid formation, comparable to sham animals. In conclusion, the formation and separation of low metabolic bacterial micro-aggregates into various size fractions is possible, however, planktonic bacteria were still seen in all size fractions. Inoculation with micro-aggregates caused a less-aggressive osteomyelitis i.e. combination of infected tissue and strong healing response. Therefore, the use of low metabolic micro-aggregates could be a relevant inoculum for animal models of less-aggressive and thereby slower developing IAI and add in to our understanding of the host-implant-bacteria interactions in slow-onset low-grade infections.</p></div>","PeriodicalId":55844,"journal":{"name":"Biofilm","volume":"7 ","pages":"Article 100200"},"PeriodicalIF":5.9000,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S259020752400025X/pdfft?md5=60bfb6f708f5b0db56a8c995af62be27&pid=1-s2.0-S259020752400025X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Bacterial micro-aggregates as inoculum in animal models of implant-associated infections\",\"authors\":\"Katrine Top Hartmann , Regitze Lund Nielsen , Freja Cecilie Mikkelsen , Bent Aalbæk , Mads Lichtenberg , Tim Holm Jakobsen , Thomas Bjarnsholt , Lasse Kvich , Hanne Ingmer , Anders Odgaard , Henrik Elvang Jensen , Louise Kruse Jensen\",\"doi\":\"10.1016/j.bioflm.2024.100200\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Is it time to rethink the inoculum of animal models of implant-associated infections (IAI)? Traditionally, animal models of IAI are based on inoculation with metabolically active overnight cultures of planktonic bacteria or pre-grown surface-attached biofilms. However, such inoculums do not mimic the clinical initiation of IAI. Therefore, the present study aimed to develop a clinically relevant inoculum of low metabolic micro-aggregated bacteria. The porcine <em>Staphylococcus aureus</em> strain S54F9 was cultured in Tryptone Soya Broth (TSB) for seven days to facilitate the formation of low metabolic micro-aggregates. Subsequently, the aggregated culture underwent filtration using cell strainers of different pore sizes to separate micro-aggregates. Light microscopy was used to evaluate the aggregate formation and size in the different fractions, while isothermal microcalorimetry was used to disclose a low metabolic activity. The micro-aggregate fraction obtained with filter size 5–15 μm (actual measured mean size 32 μm) was used as inoculum in a porcine implant-associated osteomyelitis (IAO) model and compared to a standard overnight planktonic inoculum and a sham inoculum of 0.9 % saline. The micro-aggregate and planktonic inoculums caused IAO with the re-isolation of <em>S. aureus</em> from soft tissues, bones, and implants. However, compared to their planktonic counterpart, neither of the micro-aggregate inoculated animals showed signs of osteomyelitis, i.e., sequester, osteolysis, and pus at gross inspection. Furthermore, inoculation with low metabolic micro-aggregates resulted in a strong healing response with pronounced osteoid formation, comparable to sham animals. In conclusion, the formation and separation of low metabolic bacterial micro-aggregates into various size fractions is possible, however, planktonic bacteria were still seen in all size fractions. Inoculation with micro-aggregates caused a less-aggressive osteomyelitis i.e. combination of infected tissue and strong healing response. Therefore, the use of low metabolic micro-aggregates could be a relevant inoculum for animal models of less-aggressive and thereby slower developing IAI and add in to our understanding of the host-implant-bacteria interactions in slow-onset low-grade infections.</p></div>\",\"PeriodicalId\":55844,\"journal\":{\"name\":\"Biofilm\",\"volume\":\"7 \",\"pages\":\"Article 100200\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2024-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S259020752400025X/pdfft?md5=60bfb6f708f5b0db56a8c995af62be27&pid=1-s2.0-S259020752400025X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biofilm\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S259020752400025X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biofilm","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S259020752400025X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
Bacterial micro-aggregates as inoculum in animal models of implant-associated infections
Is it time to rethink the inoculum of animal models of implant-associated infections (IAI)? Traditionally, animal models of IAI are based on inoculation with metabolically active overnight cultures of planktonic bacteria or pre-grown surface-attached biofilms. However, such inoculums do not mimic the clinical initiation of IAI. Therefore, the present study aimed to develop a clinically relevant inoculum of low metabolic micro-aggregated bacteria. The porcine Staphylococcus aureus strain S54F9 was cultured in Tryptone Soya Broth (TSB) for seven days to facilitate the formation of low metabolic micro-aggregates. Subsequently, the aggregated culture underwent filtration using cell strainers of different pore sizes to separate micro-aggregates. Light microscopy was used to evaluate the aggregate formation and size in the different fractions, while isothermal microcalorimetry was used to disclose a low metabolic activity. The micro-aggregate fraction obtained with filter size 5–15 μm (actual measured mean size 32 μm) was used as inoculum in a porcine implant-associated osteomyelitis (IAO) model and compared to a standard overnight planktonic inoculum and a sham inoculum of 0.9 % saline. The micro-aggregate and planktonic inoculums caused IAO with the re-isolation of S. aureus from soft tissues, bones, and implants. However, compared to their planktonic counterpart, neither of the micro-aggregate inoculated animals showed signs of osteomyelitis, i.e., sequester, osteolysis, and pus at gross inspection. Furthermore, inoculation with low metabolic micro-aggregates resulted in a strong healing response with pronounced osteoid formation, comparable to sham animals. In conclusion, the formation and separation of low metabolic bacterial micro-aggregates into various size fractions is possible, however, planktonic bacteria were still seen in all size fractions. Inoculation with micro-aggregates caused a less-aggressive osteomyelitis i.e. combination of infected tissue and strong healing response. Therefore, the use of low metabolic micro-aggregates could be a relevant inoculum for animal models of less-aggressive and thereby slower developing IAI and add in to our understanding of the host-implant-bacteria interactions in slow-onset low-grade infections.