{"title":"模拟极端事件的条件季节性马尔可夫开关自回归模型:河流流量应用","authors":"Bassel Habeeb , Emilio Bastidas-Arteaga , Mauricio Sánchez-Silva , You Dong","doi":"10.1016/j.envsoft.2024.106066","DOIUrl":null,"url":null,"abstract":"<div><p>Extreme events have the potential to significantly impact transportation infrastructure performance. For example, in the case of bridges, climate change impacts the river discharge, hence scouring patterns, which in turn, affects the bridge foundation stability. Therefore, extreme events (river flow) forecasting is mandatory in bridge reliability analysis. This paper approaches this river flow forecasting problem by developing a Markov-Switching Autoregressive model coupled with a conditional hidden seasonal Markov component. In addition, the proposed model is also combined with the deep machine learning neural networks method to forecast river flow from a dataset or from simulations. The proposed method is illustrated by using realistic data: historic river flow values of the Thames River. The results indicate that the proposed model well represented the extreme events within the dataset. In terms of river flow forecasting, the results indicate that the forecasts improve when the training period changes from 20 years to 40 years.</p></div>","PeriodicalId":310,"journal":{"name":"Environmental Modelling & Software","volume":null,"pages":null},"PeriodicalIF":4.8000,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Conditional seasonal markov-switching autoregressive model to simulate extreme events: Application to river flow\",\"authors\":\"Bassel Habeeb , Emilio Bastidas-Arteaga , Mauricio Sánchez-Silva , You Dong\",\"doi\":\"10.1016/j.envsoft.2024.106066\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Extreme events have the potential to significantly impact transportation infrastructure performance. For example, in the case of bridges, climate change impacts the river discharge, hence scouring patterns, which in turn, affects the bridge foundation stability. Therefore, extreme events (river flow) forecasting is mandatory in bridge reliability analysis. This paper approaches this river flow forecasting problem by developing a Markov-Switching Autoregressive model coupled with a conditional hidden seasonal Markov component. In addition, the proposed model is also combined with the deep machine learning neural networks method to forecast river flow from a dataset or from simulations. The proposed method is illustrated by using realistic data: historic river flow values of the Thames River. The results indicate that the proposed model well represented the extreme events within the dataset. In terms of river flow forecasting, the results indicate that the forecasts improve when the training period changes from 20 years to 40 years.</p></div>\",\"PeriodicalId\":310,\"journal\":{\"name\":\"Environmental Modelling & Software\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Modelling & Software\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1364815224001270\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Modelling & Software","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1364815224001270","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Conditional seasonal markov-switching autoregressive model to simulate extreme events: Application to river flow
Extreme events have the potential to significantly impact transportation infrastructure performance. For example, in the case of bridges, climate change impacts the river discharge, hence scouring patterns, which in turn, affects the bridge foundation stability. Therefore, extreme events (river flow) forecasting is mandatory in bridge reliability analysis. This paper approaches this river flow forecasting problem by developing a Markov-Switching Autoregressive model coupled with a conditional hidden seasonal Markov component. In addition, the proposed model is also combined with the deep machine learning neural networks method to forecast river flow from a dataset or from simulations. The proposed method is illustrated by using realistic data: historic river flow values of the Thames River. The results indicate that the proposed model well represented the extreme events within the dataset. In terms of river flow forecasting, the results indicate that the forecasts improve when the training period changes from 20 years to 40 years.
期刊介绍:
Environmental Modelling & Software publishes contributions, in the form of research articles, reviews and short communications, on recent advances in environmental modelling and/or software. The aim is to improve our capacity to represent, understand, predict or manage the behaviour of environmental systems at all practical scales, and to communicate those improvements to a wide scientific and professional audience.