一类有物流的局部和非局部非线性吸引-排斥趋化模型中的时间均匀有界性

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Alessandro Columbu, Rafael Díaz Fuentes, Silvia Frassu
{"title":"一类有物流的局部和非局部非线性吸引-排斥趋化模型中的时间均匀有界性","authors":"Alessandro Columbu,&nbsp;Rafael Díaz Fuentes,&nbsp;Silvia Frassu","doi":"10.1016/j.nonrwa.2024.104135","DOIUrl":null,"url":null,"abstract":"<div><p>The following fully nonlinear attraction–repulsion and zero-flux chemotaxis model is studied: <span><span><span>(<span><math><mo>♢</mo></math></span>)</span><span><math><mfenced><mrow><mtable><mtr><mtd><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mo>∇</mo><mi>⋅</mi><mfenced><mrow><msup><mrow><mrow><mo>(</mo><mi>u</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow></mrow><mrow><msub><mrow><mi>m</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>−</mo><mn>1</mn></mrow></msup><mo>∇</mo><mi>u</mi><mo>−</mo><mi>χ</mi><mi>u</mi><msup><mrow><mrow><mo>(</mo><mi>u</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow></mrow><mrow><msub><mrow><mi>m</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>−</mo><mn>1</mn></mrow></msup><mo>∇</mo><mi>v</mi></mrow></mfenced><mspace></mspace></mtd></mtr><mtr><mtd><mfenced><mrow><mspace></mspace><mo>+</mo><mi>ξ</mi><mi>u</mi><msup><mrow><mrow><mo>(</mo><mi>u</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow></mrow><mrow><msub><mrow><mi>m</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>−</mo><mn>1</mn></mrow></msup><mo>∇</mo><mi>w</mi></mrow></mfenced><mo>+</mo><mi>λ</mi><mi>u</mi><mo>−</mo><mi>μ</mi><msup><mrow><mi>u</mi></mrow><mrow><mi>r</mi></mrow></msup><mspace></mspace></mtd><mtd><mtext>in</mtext><mspace></mspace><mi>Ω</mi><mo>×</mo><mrow><mo>(</mo><mn>0</mn><mo>,</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>m</mi><mi>a</mi><mi>x</mi></mrow></msub><mo>)</mo></mrow><mo>,</mo></mtd></mtr><mtr><mtd><mi>τ</mi><msub><mrow><mi>v</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mi>Δ</mi><mi>v</mi><mo>−</mo><mi>ϕ</mi><mrow><mo>(</mo><mi>t</mi><mo>,</mo><mi>v</mi><mo>)</mo></mrow><mo>+</mo><mi>f</mi><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow><mspace></mspace></mtd><mtd><mtext>in</mtext><mspace></mspace><mi>Ω</mi><mo>×</mo><mrow><mo>(</mo><mn>0</mn><mo>,</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>m</mi><mi>a</mi><mi>x</mi></mrow></msub><mo>)</mo></mrow><mo>,</mo></mtd></mtr><mtr><mtd><mi>τ</mi><msub><mrow><mi>w</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mi>Δ</mi><mi>w</mi><mo>−</mo><mi>ψ</mi><mrow><mo>(</mo><mi>t</mi><mo>,</mo><mi>w</mi><mo>)</mo></mrow><mo>+</mo><mi>g</mi><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow><mspace></mspace></mtd><mtd><mtext>in</mtext><mspace></mspace><mi>Ω</mi><mo>×</mo><mrow><mo>(</mo><mn>0</mn><mo>,</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>m</mi><mi>a</mi><mi>x</mi></mrow></msub><mo>)</mo></mrow><mo>.</mo></mtd></mtr></mtable></mrow></mfenced></math></span></span></span>Herein, <span><math><mi>Ω</mi></math></span> is a bounded and smooth domain of <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>, for <span><math><mrow><mi>n</mi><mo>∈</mo><mi>N</mi></mrow></math></span>, <span><math><mrow><mi>χ</mi><mo>,</mo><mi>ξ</mi><mo>,</mo><mi>λ</mi><mo>,</mo><mi>μ</mi><mo>,</mo><mi>r</mi></mrow></math></span> proper positive numbers, <span><math><mrow><msub><mrow><mi>m</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>m</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><msub><mrow><mi>m</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>∈</mo><mi>R</mi></mrow></math></span>, and <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><mi>g</mi><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow></mrow></math></span> regular functions that generalize the prototypes <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow><mo>≃</mo><msup><mrow><mi>u</mi></mrow><mrow><mi>k</mi></mrow></msup></mrow></math></span> and <span><math><mrow><mi>g</mi><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow><mo>≃</mo><msup><mrow><mi>u</mi></mrow><mrow><mi>l</mi></mrow></msup></mrow></math></span>, for some <span><math><mrow><mi>k</mi><mo>,</mo><mi>l</mi><mo>&gt;</mo><mn>0</mn></mrow></math></span> and all <span><math><mrow><mi>u</mi><mo>≥</mo><mn>0</mn></mrow></math></span>. Moreover, <span><math><mrow><mi>τ</mi><mo>∈</mo><mrow><mo>{</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>}</mo></mrow></mrow></math></span>, and <span><math><mrow><msub><mrow><mi>T</mi></mrow><mrow><mi>m</mi><mi>a</mi><mi>x</mi></mrow></msub><mo>∈</mo><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mi>∞</mi><mo>]</mo></mrow></mrow></math></span> is the maximal interval of existence of solutions to the model. Once suitable initial data <span><math><mrow><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>,</mo><mi>τ</mi><msub><mrow><mi>v</mi></mrow><mrow><mn>0</mn></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>,</mo><mi>τ</mi><msub><mrow><mi>w</mi></mrow><mrow><mn>0</mn></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span> are fixed, we are interested in deriving sufficient conditions implying globality (i.e., <span><math><mrow><msub><mrow><mi>T</mi></mrow><mrow><mi>m</mi><mi>a</mi><mi>x</mi></mrow></msub><mo>=</mo><mi>∞</mi></mrow></math></span>) and boundedness (i.e., <span><math><mrow><mo>‖</mo><mi>u</mi><mrow><mo>(</mo><mi>⋅</mi><mo>,</mo><mi>t</mi><mo>)</mo></mrow><msub><mrow><mo>‖</mo></mrow><mrow><msup><mrow><mi>L</mi></mrow><mrow><mi>∞</mi></mrow></msup><mrow><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow></mrow></msub><mo>+</mo><mo>‖</mo><mi>v</mi><mrow><mo>(</mo><mi>⋅</mi><mo>,</mo><mi>t</mi><mo>)</mo></mrow><msub><mrow><mo>‖</mo></mrow><mrow><msup><mrow><mi>L</mi></mrow><mrow><mi>∞</mi></mrow></msup><mrow><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow></mrow></msub><mo>+</mo><mo>‖</mo><mi>w</mi><mrow><mo>(</mo><mi>⋅</mi><mo>,</mo><mi>t</mi><mo>)</mo></mrow><msub><mrow><mo>‖</mo></mrow><mrow><msup><mrow><mi>L</mi></mrow><mrow><mi>∞</mi></mrow></msup><mrow><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow></mrow></msub><mo>≤</mo><mi>C</mi></mrow></math></span> for all <span><math><mrow><mi>t</mi><mo>∈</mo><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mi>∞</mi><mo>)</mo></mrow></mrow></math></span>) of solutions to problem <span>(1)</span>. This is achieved in the following scenarios:</p><p><span><math><mo>⊳</mo></math></span> For <span><math><mrow><mi>ϕ</mi><mrow><mo>(</mo><mi>t</mi><mo>,</mo><mi>v</mi><mo>)</mo></mrow></mrow></math></span> proportional to <span><math><mi>v</mi></math></span> and <span><math><mrow><mi>ψ</mi><mrow><mo>(</mo><mi>t</mi><mo>,</mo><mi>w</mi><mo>)</mo></mrow></mrow></math></span> to <span><math><mi>w</mi></math></span>, whenever <span><math><mrow><mi>τ</mi><mo>=</mo><mn>0</mn></mrow></math></span> and provided one of the following conditions</p><p>(I) <span><math><mrow><msub><mrow><mi>m</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>+</mo><mi>k</mi><mo>&lt;</mo><msub><mrow><mi>m</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>+</mo><mi>l</mi></mrow></math></span>, <span><math><mspace></mspace></math></span> (II) <span><math><mrow><msub><mrow><mi>m</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>+</mo><mi>k</mi><mo>&lt;</mo><mi>r</mi></mrow></math></span>, <span><math><mspace></mspace></math></span> (III) <span><math><mrow><msub><mrow><mi>m</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>+</mo><mi>k</mi><mo>&lt;</mo><msub><mrow><mi>m</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><mfrac><mrow><mn>2</mn></mrow><mrow><mi>n</mi></mrow></mfrac></mrow></math></span></p><p>is accomplished or <span><math><mrow><mi>τ</mi><mo>=</mo><mn>1</mn></mrow></math></span> in conjunction with one of these restrictions</p><p>(i) <span><math><mrow><mo>max</mo><mrow><mo>[</mo><msub><mrow><mi>m</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>+</mo><mi>k</mi><mo>,</mo><msub><mrow><mi>m</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>+</mo><mi>l</mi><mo>]</mo></mrow><mo>&lt;</mo><mi>r</mi></mrow></math></span>, <span><math><mspace></mspace></math></span> (ii) <span><math><mrow><mo>max</mo><mrow><mo>[</mo><msub><mrow><mi>m</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>+</mo><mi>k</mi><mo>,</mo><msub><mrow><mi>m</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>+</mo><mi>l</mi><mo>]</mo></mrow><mo>&lt;</mo><msub><mrow><mi>m</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><mfrac><mrow><mn>2</mn></mrow><mrow><mi>n</mi></mrow></mfrac></mrow></math></span>,</p><p>(iii) <span><math><mrow><msub><mrow><mi>m</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>+</mo><mi>k</mi><mo>&lt;</mo><mi>r</mi></mrow></math></span> and <span><math><mrow><msub><mrow><mi>m</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>+</mo><mi>l</mi><mo>&lt;</mo><msub><mrow><mi>m</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><mfrac><mrow><mn>2</mn></mrow><mrow><mi>n</mi></mrow></mfrac></mrow></math></span>, <span><math><mspace></mspace></math></span> (iv) <span><math><mrow><msub><mrow><mi>m</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>+</mo><mi>k</mi><mo>&lt;</mo><msub><mrow><mi>m</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><mfrac><mrow><mn>2</mn></mrow><mrow><mi>n</mi></mrow></mfrac></mrow></math></span> and <span><math><mrow><msub><mrow><mi>m</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>+</mo><mi>l</mi><mo>&lt;</mo><mi>r</mi></mrow></math></span>;</p><p><span><math><mo>⊳</mo></math></span> For <span><math><mrow><mi>ϕ</mi><mrow><mo>(</mo><mi>t</mi><mo>,</mo><mi>v</mi><mo>)</mo></mrow><mo>=</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mrow><mo>|</mo><mi>Ω</mi><mo>|</mo></mrow></mrow></mfrac><msub><mrow><mo>∫</mo></mrow><mrow><mi>Ω</mi></mrow></msub><mi>f</mi><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><mi>ψ</mi><mrow><mo>(</mo><mi>t</mi><mo>,</mo><mi>w</mi><mo>)</mo></mrow><mo>=</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mrow><mo>|</mo><mi>Ω</mi><mo>|</mo></mrow></mrow></mfrac><msub><mrow><mo>∫</mo></mrow><mrow><mi>Ω</mi></mrow></msub><mi>g</mi><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow></mrow></math></span>, whenever <span><math><mrow><mi>τ</mi><mo>=</mo><mn>0</mn></mrow></math></span> if moreover one among (I), (II), (III) is fulfilled.</p><p>Our research partially improves and extends some results derived in Jiao et al. (2024); Ren and Liu (2020); Chiyo and Yokota (2022); Columbu et al. (2023).</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1468121824000750/pdfft?md5=7ea2ce86ba1b3e1921a481bb478cddb6&pid=1-s2.0-S1468121824000750-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Uniform-in-time boundedness in a class of local and nonlocal nonlinear attraction–repulsion chemotaxis models with logistics\",\"authors\":\"Alessandro Columbu,&nbsp;Rafael Díaz Fuentes,&nbsp;Silvia Frassu\",\"doi\":\"10.1016/j.nonrwa.2024.104135\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The following fully nonlinear attraction–repulsion and zero-flux chemotaxis model is studied: <span><span><span>(<span><math><mo>♢</mo></math></span>)</span><span><math><mfenced><mrow><mtable><mtr><mtd><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mo>∇</mo><mi>⋅</mi><mfenced><mrow><msup><mrow><mrow><mo>(</mo><mi>u</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow></mrow><mrow><msub><mrow><mi>m</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>−</mo><mn>1</mn></mrow></msup><mo>∇</mo><mi>u</mi><mo>−</mo><mi>χ</mi><mi>u</mi><msup><mrow><mrow><mo>(</mo><mi>u</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow></mrow><mrow><msub><mrow><mi>m</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>−</mo><mn>1</mn></mrow></msup><mo>∇</mo><mi>v</mi></mrow></mfenced><mspace></mspace></mtd></mtr><mtr><mtd><mfenced><mrow><mspace></mspace><mo>+</mo><mi>ξ</mi><mi>u</mi><msup><mrow><mrow><mo>(</mo><mi>u</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow></mrow><mrow><msub><mrow><mi>m</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>−</mo><mn>1</mn></mrow></msup><mo>∇</mo><mi>w</mi></mrow></mfenced><mo>+</mo><mi>λ</mi><mi>u</mi><mo>−</mo><mi>μ</mi><msup><mrow><mi>u</mi></mrow><mrow><mi>r</mi></mrow></msup><mspace></mspace></mtd><mtd><mtext>in</mtext><mspace></mspace><mi>Ω</mi><mo>×</mo><mrow><mo>(</mo><mn>0</mn><mo>,</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>m</mi><mi>a</mi><mi>x</mi></mrow></msub><mo>)</mo></mrow><mo>,</mo></mtd></mtr><mtr><mtd><mi>τ</mi><msub><mrow><mi>v</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mi>Δ</mi><mi>v</mi><mo>−</mo><mi>ϕ</mi><mrow><mo>(</mo><mi>t</mi><mo>,</mo><mi>v</mi><mo>)</mo></mrow><mo>+</mo><mi>f</mi><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow><mspace></mspace></mtd><mtd><mtext>in</mtext><mspace></mspace><mi>Ω</mi><mo>×</mo><mrow><mo>(</mo><mn>0</mn><mo>,</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>m</mi><mi>a</mi><mi>x</mi></mrow></msub><mo>)</mo></mrow><mo>,</mo></mtd></mtr><mtr><mtd><mi>τ</mi><msub><mrow><mi>w</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mi>Δ</mi><mi>w</mi><mo>−</mo><mi>ψ</mi><mrow><mo>(</mo><mi>t</mi><mo>,</mo><mi>w</mi><mo>)</mo></mrow><mo>+</mo><mi>g</mi><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow><mspace></mspace></mtd><mtd><mtext>in</mtext><mspace></mspace><mi>Ω</mi><mo>×</mo><mrow><mo>(</mo><mn>0</mn><mo>,</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>m</mi><mi>a</mi><mi>x</mi></mrow></msub><mo>)</mo></mrow><mo>.</mo></mtd></mtr></mtable></mrow></mfenced></math></span></span></span>Herein, <span><math><mi>Ω</mi></math></span> is a bounded and smooth domain of <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>, for <span><math><mrow><mi>n</mi><mo>∈</mo><mi>N</mi></mrow></math></span>, <span><math><mrow><mi>χ</mi><mo>,</mo><mi>ξ</mi><mo>,</mo><mi>λ</mi><mo>,</mo><mi>μ</mi><mo>,</mo><mi>r</mi></mrow></math></span> proper positive numbers, <span><math><mrow><msub><mrow><mi>m</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>m</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><msub><mrow><mi>m</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>∈</mo><mi>R</mi></mrow></math></span>, and <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><mi>g</mi><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow></mrow></math></span> regular functions that generalize the prototypes <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow><mo>≃</mo><msup><mrow><mi>u</mi></mrow><mrow><mi>k</mi></mrow></msup></mrow></math></span> and <span><math><mrow><mi>g</mi><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow><mo>≃</mo><msup><mrow><mi>u</mi></mrow><mrow><mi>l</mi></mrow></msup></mrow></math></span>, for some <span><math><mrow><mi>k</mi><mo>,</mo><mi>l</mi><mo>&gt;</mo><mn>0</mn></mrow></math></span> and all <span><math><mrow><mi>u</mi><mo>≥</mo><mn>0</mn></mrow></math></span>. Moreover, <span><math><mrow><mi>τ</mi><mo>∈</mo><mrow><mo>{</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>}</mo></mrow></mrow></math></span>, and <span><math><mrow><msub><mrow><mi>T</mi></mrow><mrow><mi>m</mi><mi>a</mi><mi>x</mi></mrow></msub><mo>∈</mo><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mi>∞</mi><mo>]</mo></mrow></mrow></math></span> is the maximal interval of existence of solutions to the model. Once suitable initial data <span><math><mrow><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>,</mo><mi>τ</mi><msub><mrow><mi>v</mi></mrow><mrow><mn>0</mn></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>,</mo><mi>τ</mi><msub><mrow><mi>w</mi></mrow><mrow><mn>0</mn></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span> are fixed, we are interested in deriving sufficient conditions implying globality (i.e., <span><math><mrow><msub><mrow><mi>T</mi></mrow><mrow><mi>m</mi><mi>a</mi><mi>x</mi></mrow></msub><mo>=</mo><mi>∞</mi></mrow></math></span>) and boundedness (i.e., <span><math><mrow><mo>‖</mo><mi>u</mi><mrow><mo>(</mo><mi>⋅</mi><mo>,</mo><mi>t</mi><mo>)</mo></mrow><msub><mrow><mo>‖</mo></mrow><mrow><msup><mrow><mi>L</mi></mrow><mrow><mi>∞</mi></mrow></msup><mrow><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow></mrow></msub><mo>+</mo><mo>‖</mo><mi>v</mi><mrow><mo>(</mo><mi>⋅</mi><mo>,</mo><mi>t</mi><mo>)</mo></mrow><msub><mrow><mo>‖</mo></mrow><mrow><msup><mrow><mi>L</mi></mrow><mrow><mi>∞</mi></mrow></msup><mrow><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow></mrow></msub><mo>+</mo><mo>‖</mo><mi>w</mi><mrow><mo>(</mo><mi>⋅</mi><mo>,</mo><mi>t</mi><mo>)</mo></mrow><msub><mrow><mo>‖</mo></mrow><mrow><msup><mrow><mi>L</mi></mrow><mrow><mi>∞</mi></mrow></msup><mrow><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow></mrow></msub><mo>≤</mo><mi>C</mi></mrow></math></span> for all <span><math><mrow><mi>t</mi><mo>∈</mo><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mi>∞</mi><mo>)</mo></mrow></mrow></math></span>) of solutions to problem <span>(1)</span>. This is achieved in the following scenarios:</p><p><span><math><mo>⊳</mo></math></span> For <span><math><mrow><mi>ϕ</mi><mrow><mo>(</mo><mi>t</mi><mo>,</mo><mi>v</mi><mo>)</mo></mrow></mrow></math></span> proportional to <span><math><mi>v</mi></math></span> and <span><math><mrow><mi>ψ</mi><mrow><mo>(</mo><mi>t</mi><mo>,</mo><mi>w</mi><mo>)</mo></mrow></mrow></math></span> to <span><math><mi>w</mi></math></span>, whenever <span><math><mrow><mi>τ</mi><mo>=</mo><mn>0</mn></mrow></math></span> and provided one of the following conditions</p><p>(I) <span><math><mrow><msub><mrow><mi>m</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>+</mo><mi>k</mi><mo>&lt;</mo><msub><mrow><mi>m</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>+</mo><mi>l</mi></mrow></math></span>, <span><math><mspace></mspace></math></span> (II) <span><math><mrow><msub><mrow><mi>m</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>+</mo><mi>k</mi><mo>&lt;</mo><mi>r</mi></mrow></math></span>, <span><math><mspace></mspace></math></span> (III) <span><math><mrow><msub><mrow><mi>m</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>+</mo><mi>k</mi><mo>&lt;</mo><msub><mrow><mi>m</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><mfrac><mrow><mn>2</mn></mrow><mrow><mi>n</mi></mrow></mfrac></mrow></math></span></p><p>is accomplished or <span><math><mrow><mi>τ</mi><mo>=</mo><mn>1</mn></mrow></math></span> in conjunction with one of these restrictions</p><p>(i) <span><math><mrow><mo>max</mo><mrow><mo>[</mo><msub><mrow><mi>m</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>+</mo><mi>k</mi><mo>,</mo><msub><mrow><mi>m</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>+</mo><mi>l</mi><mo>]</mo></mrow><mo>&lt;</mo><mi>r</mi></mrow></math></span>, <span><math><mspace></mspace></math></span> (ii) <span><math><mrow><mo>max</mo><mrow><mo>[</mo><msub><mrow><mi>m</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>+</mo><mi>k</mi><mo>,</mo><msub><mrow><mi>m</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>+</mo><mi>l</mi><mo>]</mo></mrow><mo>&lt;</mo><msub><mrow><mi>m</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><mfrac><mrow><mn>2</mn></mrow><mrow><mi>n</mi></mrow></mfrac></mrow></math></span>,</p><p>(iii) <span><math><mrow><msub><mrow><mi>m</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>+</mo><mi>k</mi><mo>&lt;</mo><mi>r</mi></mrow></math></span> and <span><math><mrow><msub><mrow><mi>m</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>+</mo><mi>l</mi><mo>&lt;</mo><msub><mrow><mi>m</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><mfrac><mrow><mn>2</mn></mrow><mrow><mi>n</mi></mrow></mfrac></mrow></math></span>, <span><math><mspace></mspace></math></span> (iv) <span><math><mrow><msub><mrow><mi>m</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>+</mo><mi>k</mi><mo>&lt;</mo><msub><mrow><mi>m</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><mfrac><mrow><mn>2</mn></mrow><mrow><mi>n</mi></mrow></mfrac></mrow></math></span> and <span><math><mrow><msub><mrow><mi>m</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>+</mo><mi>l</mi><mo>&lt;</mo><mi>r</mi></mrow></math></span>;</p><p><span><math><mo>⊳</mo></math></span> For <span><math><mrow><mi>ϕ</mi><mrow><mo>(</mo><mi>t</mi><mo>,</mo><mi>v</mi><mo>)</mo></mrow><mo>=</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mrow><mo>|</mo><mi>Ω</mi><mo>|</mo></mrow></mrow></mfrac><msub><mrow><mo>∫</mo></mrow><mrow><mi>Ω</mi></mrow></msub><mi>f</mi><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><mi>ψ</mi><mrow><mo>(</mo><mi>t</mi><mo>,</mo><mi>w</mi><mo>)</mo></mrow><mo>=</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mrow><mo>|</mo><mi>Ω</mi><mo>|</mo></mrow></mrow></mfrac><msub><mrow><mo>∫</mo></mrow><mrow><mi>Ω</mi></mrow></msub><mi>g</mi><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow></mrow></math></span>, whenever <span><math><mrow><mi>τ</mi><mo>=</mo><mn>0</mn></mrow></math></span> if moreover one among (I), (II), (III) is fulfilled.</p><p>Our research partially improves and extends some results derived in Jiao et al. (2024); Ren and Liu (2020); Chiyo and Yokota (2022); Columbu et al. (2023).</p></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1468121824000750/pdfft?md5=7ea2ce86ba1b3e1921a481bb478cddb6&pid=1-s2.0-S1468121824000750-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1468121824000750\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1468121824000750","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

研究了以下全非线性吸引-排斥和零流量趋化模型:(♢)ut=∇⋅(u+1)m1-1∇u-χu(u+1)m2-1∇v+ξu(u+1)m3-1∇w+λu-μurinΩ×(0,Tmax),τvt=Δv-ϕ(t,v)+f(u)inΩ×(0,Tmax),τwt=Δw-ψ(t,w)+g(u)inΩ×(0,Tmax).这里,Ω是Rn的一个有界光滑域,对于n∈N,χ,ξ,λ,μ,r为适当的正数,m1,m2,m3∈R,f(u)和g(u)为正则函数,它们概括了原型f(u)≃uk和g(u)≃ul,对于某些k,l>0和所有u≥0。此外,τ∈{0,1}和Tmax∈(0,∞]是模型解存在的最大区间。一旦合适的初始数据 u0(x)、τv0(x)、τw0(x) 固定下来,我们就有兴趣推导出意味着全局性的充分条件(即Tmax=∞)和有界性(即对于所有 t∈(0,∞),‖u(⋅,t)‖L∞(Ω)+‖v(⋅,t)‖L∞(Ω)+‖w(⋅,t)‖L∞(Ω)≤C)。这可以在以下情况下实现:⊳ 对于与 v 成比例的 ϕ(t,v)和与 w 成比例的 ψ(t,w),只要 τ=0 且满足以下条件之一(I)m2+k<m3+l, (II)m2+k<r, (III)m2+k<m1+2n 即可,或 τ=1 且满足以下限制之一(i)max[m2+k,m3+l]<;r,(ii) max[m2+k,m3+l]<m1+2n ,(iii) m2+k<r 和 m3+l<m1+2n ,(iv) m2+k<m1+2n 和 m3+l<r ;⊳ 对于ϕ(t,v)=1|Ω|∫Ωf(u)和ψ(t,w)=1|Ω|∫Ωg(u),如果同时满足(I)、(II)、(III)中的一个条件,则τ=0。我们的研究部分改进并扩展了 Jiao 等 (2024); Ren 和 Liu (2020); Chiyo 和 Yokota (2022); Columbu 等 (2023) 中的一些结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Uniform-in-time boundedness in a class of local and nonlocal nonlinear attraction–repulsion chemotaxis models with logistics

The following fully nonlinear attraction–repulsion and zero-flux chemotaxis model is studied: ()ut=(u+1)m11uχu(u+1)m21v+ξu(u+1)m31w+λuμurinΩ×(0,Tmax),τvt=Δvϕ(t,v)+f(u)inΩ×(0,Tmax),τwt=Δwψ(t,w)+g(u)inΩ×(0,Tmax).Herein, Ω is a bounded and smooth domain of Rn, for nN, χ,ξ,λ,μ,r proper positive numbers, m1,m2,m3R, and f(u) and g(u) regular functions that generalize the prototypes f(u)uk and g(u)ul, for some k,l>0 and all u0. Moreover, τ{0,1}, and Tmax(0,] is the maximal interval of existence of solutions to the model. Once suitable initial data u0(x),τv0(x),τw0(x) are fixed, we are interested in deriving sufficient conditions implying globality (i.e., Tmax=) and boundedness (i.e., u(,t)L(Ω)+v(,t)L(Ω)+w(,t)L(Ω)C for all t(0,)) of solutions to problem (1). This is achieved in the following scenarios:

For ϕ(t,v) proportional to v and ψ(t,w) to w, whenever τ=0 and provided one of the following conditions

(I) m2+k<m3+l, (II) m2+k<r, (III) m2+k<m1+2n

is accomplished or τ=1 in conjunction with one of these restrictions

(i) max[m2+k,m3+l]<r, (ii) max[m2+k,m3+l]<m1+2n,

(iii) m2+k<r and m3+l<m1+2n, (iv) m2+k<m1+2n and m3+l<r;

For ϕ(t,v)=1|Ω|Ωf(u) and ψ(t,w)=1|Ω|Ωg(u), whenever τ=0 if moreover one among (I), (II), (III) is fulfilled.

Our research partially improves and extends some results derived in Jiao et al. (2024); Ren and Liu (2020); Chiyo and Yokota (2022); Columbu et al. (2023).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信