裂纹尖端附近微结构内的氢扩散行为:晶体塑性研究

IF 4.1 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Kaidi Li , Bin Tang , Mengqi Zhang , Jinhua Dai , Xichuan Cao , Bangqi Yin , Zhenshun Zhang , Jiangkun Fan , Jinshan Li
{"title":"裂纹尖端附近微结构内的氢扩散行为:晶体塑性研究","authors":"Kaidi Li ,&nbsp;Bin Tang ,&nbsp;Mengqi Zhang ,&nbsp;Jinhua Dai ,&nbsp;Xichuan Cao ,&nbsp;Bangqi Yin ,&nbsp;Zhenshun Zhang ,&nbsp;Jiangkun Fan ,&nbsp;Jinshan Li","doi":"10.1016/j.mechmat.2024.105032","DOIUrl":null,"url":null,"abstract":"<div><p>The hydrogen diffusion and damage characteristics within the microstructure at the crack tip are direct factors determining hydrogen embrittlement (HE) phenomena, yet research in this area from a mesoscale perspective is still insufficient. This study employs a non-local crystal plasticity constitutive model coupled with a hydrogen diffusion model that considers grain boundary (GB) characteristics and incorporates fracture initiation parameter accounting for the HELP + HEDE mechanisms. The research investigates hydrogen diffusion behavior at the crack tip in pure nickel and provide a detailed exploration of the mechanism underlying hydrogen-assisted crack propagation. The results indicate that the non-local model exhibits advantages in simulating the hydrogen diffusion process. Hydrogen induces intragranular cracks to propagate along slip planes with a high dislocation density. High-energy GBs and triple junctions are more susceptible to hydrogen accumulation, and under the influence of the HEDE mechanisms, they represent the primary sites for crack initiation. The entire fracture process involves the continuous coalescence of primary cracks with secondary cracks. Moreover, the HE resistance is better in equiaxed microstructures compared to rolled microstructures, particularly when the crack plane is parallel to the TD direction.</p></div>","PeriodicalId":18296,"journal":{"name":"Mechanics of Materials","volume":"195 ","pages":"Article 105032"},"PeriodicalIF":4.1000,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hydrogen diffusion behavior within microstructures near crack tip: A crystal plasticity study\",\"authors\":\"Kaidi Li ,&nbsp;Bin Tang ,&nbsp;Mengqi Zhang ,&nbsp;Jinhua Dai ,&nbsp;Xichuan Cao ,&nbsp;Bangqi Yin ,&nbsp;Zhenshun Zhang ,&nbsp;Jiangkun Fan ,&nbsp;Jinshan Li\",\"doi\":\"10.1016/j.mechmat.2024.105032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The hydrogen diffusion and damage characteristics within the microstructure at the crack tip are direct factors determining hydrogen embrittlement (HE) phenomena, yet research in this area from a mesoscale perspective is still insufficient. This study employs a non-local crystal plasticity constitutive model coupled with a hydrogen diffusion model that considers grain boundary (GB) characteristics and incorporates fracture initiation parameter accounting for the HELP + HEDE mechanisms. The research investigates hydrogen diffusion behavior at the crack tip in pure nickel and provide a detailed exploration of the mechanism underlying hydrogen-assisted crack propagation. The results indicate that the non-local model exhibits advantages in simulating the hydrogen diffusion process. Hydrogen induces intragranular cracks to propagate along slip planes with a high dislocation density. High-energy GBs and triple junctions are more susceptible to hydrogen accumulation, and under the influence of the HEDE mechanisms, they represent the primary sites for crack initiation. The entire fracture process involves the continuous coalescence of primary cracks with secondary cracks. Moreover, the HE resistance is better in equiaxed microstructures compared to rolled microstructures, particularly when the crack plane is parallel to the TD direction.</p></div>\",\"PeriodicalId\":18296,\"journal\":{\"name\":\"Mechanics of Materials\",\"volume\":\"195 \",\"pages\":\"Article 105032\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mechanics of Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167663624001248\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanics of Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167663624001248","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

裂纹尖端微结构内的氢扩散和损伤特征是决定氢脆(HE)现象的直接因素,但从中尺度的角度来看,这方面的研究仍然不足。本研究采用了非局部晶体塑性构成模型与氢扩散模型相结合的方法,该模型考虑了晶界(GB)特性,并纳入了考虑 HELP + HEDE 机制的断裂起始参数。研究调查了纯镍裂纹尖端的氢扩散行为,并详细探讨了氢辅助裂纹扩展的基本机制。结果表明,非局部模型在模拟氢扩散过程中表现出优势。氢促使晶内裂纹沿着位错密度较高的滑移面扩展。高能量 GB 和三重交界处更容易积聚氢气,在 HEDE 机制的影响下,它们是裂纹萌生的主要部位。整个断裂过程包括原生裂纹与次生裂纹的不断凝聚。此外,与轧制微结构相比,等轴微结构的抗氢化热性能更好,尤其是当裂纹平面平行于 TD 方向时。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hydrogen diffusion behavior within microstructures near crack tip: A crystal plasticity study

The hydrogen diffusion and damage characteristics within the microstructure at the crack tip are direct factors determining hydrogen embrittlement (HE) phenomena, yet research in this area from a mesoscale perspective is still insufficient. This study employs a non-local crystal plasticity constitutive model coupled with a hydrogen diffusion model that considers grain boundary (GB) characteristics and incorporates fracture initiation parameter accounting for the HELP + HEDE mechanisms. The research investigates hydrogen diffusion behavior at the crack tip in pure nickel and provide a detailed exploration of the mechanism underlying hydrogen-assisted crack propagation. The results indicate that the non-local model exhibits advantages in simulating the hydrogen diffusion process. Hydrogen induces intragranular cracks to propagate along slip planes with a high dislocation density. High-energy GBs and triple junctions are more susceptible to hydrogen accumulation, and under the influence of the HEDE mechanisms, they represent the primary sites for crack initiation. The entire fracture process involves the continuous coalescence of primary cracks with secondary cracks. Moreover, the HE resistance is better in equiaxed microstructures compared to rolled microstructures, particularly when the crack plane is parallel to the TD direction.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mechanics of Materials
Mechanics of Materials 工程技术-材料科学:综合
CiteScore
7.60
自引率
5.10%
发文量
243
审稿时长
46 days
期刊介绍: Mechanics of Materials is a forum for original scientific research on the flow, fracture, and general constitutive behavior of geophysical, geotechnical and technological materials, with balanced coverage of advanced technological and natural materials, with balanced coverage of theoretical, experimental, and field investigations. Of special concern are macroscopic predictions based on microscopic models, identification of microscopic structures from limited overall macroscopic data, experimental and field results that lead to fundamental understanding of the behavior of materials, and coordinated experimental and analytical investigations that culminate in theories with predictive quality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信