评估荧光细胞图像分割性能的生成基准

IF 4.4 2区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Jun Tang , Wei Du , Zhanpeng Shu , Zhixing Cao
{"title":"评估荧光细胞图像分割性能的生成基准","authors":"Jun Tang ,&nbsp;Wei Du ,&nbsp;Zhanpeng Shu ,&nbsp;Zhixing Cao","doi":"10.1016/j.synbio.2024.05.005","DOIUrl":null,"url":null,"abstract":"<div><p>Fluorescent cell imaging technology is fundamental in life science research, offering a rich source of image data crucial for understanding cell spatial positioning, differentiation, and decision-making mechanisms. As the volume of this data expands, precise image analysis becomes increasingly critical. Cell segmentation, a key analysis step, significantly influences quantitative analysis outcomes. However, selecting the most effective segmentation method is challenging, hindered by existing evaluation methods' inaccuracies, lack of graded evaluation, and narrow assessment scope. Addressing this, we developed a novel framework with two modules: StyleGAN2-based contour generation and Pix2PixHD-based image rendering, producing diverse, graded-density cell images. Using this dataset, we evaluated three leading cell segmentation methods: DeepCell, CellProfiler, and CellPose. Our comprehensive comparison revealed CellProfiler's superior accuracy in segmenting cytoplasm and nuclei. Our framework diversifies cell image data generation and systematically addresses evaluation challenges in cell segmentation technologies, establishing a solid foundation for advancing research and applications in cell image analysis.</p></div>","PeriodicalId":22148,"journal":{"name":"Synthetic and Systems Biotechnology","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2405805X24000802/pdfft?md5=13815bcd26120681d6104aa2879c4302&pid=1-s2.0-S2405805X24000802-main.pdf","citationCount":"0","resultStr":"{\"title\":\"A generative benchmark for evaluating the performance of fluorescent cell image segmentation\",\"authors\":\"Jun Tang ,&nbsp;Wei Du ,&nbsp;Zhanpeng Shu ,&nbsp;Zhixing Cao\",\"doi\":\"10.1016/j.synbio.2024.05.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Fluorescent cell imaging technology is fundamental in life science research, offering a rich source of image data crucial for understanding cell spatial positioning, differentiation, and decision-making mechanisms. As the volume of this data expands, precise image analysis becomes increasingly critical. Cell segmentation, a key analysis step, significantly influences quantitative analysis outcomes. However, selecting the most effective segmentation method is challenging, hindered by existing evaluation methods' inaccuracies, lack of graded evaluation, and narrow assessment scope. Addressing this, we developed a novel framework with two modules: StyleGAN2-based contour generation and Pix2PixHD-based image rendering, producing diverse, graded-density cell images. Using this dataset, we evaluated three leading cell segmentation methods: DeepCell, CellProfiler, and CellPose. Our comprehensive comparison revealed CellProfiler's superior accuracy in segmenting cytoplasm and nuclei. Our framework diversifies cell image data generation and systematically addresses evaluation challenges in cell segmentation technologies, establishing a solid foundation for advancing research and applications in cell image analysis.</p></div>\",\"PeriodicalId\":22148,\"journal\":{\"name\":\"Synthetic and Systems Biotechnology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2405805X24000802/pdfft?md5=13815bcd26120681d6104aa2879c4302&pid=1-s2.0-S2405805X24000802-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Synthetic and Systems Biotechnology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2405805X24000802\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Synthetic and Systems Biotechnology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405805X24000802","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

荧光细胞成像技术是生命科学研究的基础,它提供了丰富的图像数据源,对了解细胞的空间定位、分化和决策机制至关重要。随着数据量的增加,精确的图像分析变得越来越重要。细胞分割是一个关键的分析步骤,对定量分析结果有重大影响。然而,选择最有效的分割方法具有挑战性,现有的评估方法存在不准确、缺乏分级评估以及评估范围狭窄等问题。为此,我们开发了一个包含两个模块的新型框架:基于 StyleGAN2 的轮廓生成和基于 Pix2PixHD 的图像渲染,生成多样化、分级密度的细胞图像。利用该数据集,我们评估了三种领先的细胞分割方法:DeepCell、CellProfiler 和 CellPose。通过综合比较,我们发现 CellProfiler 在分割细胞质和细胞核方面的准确性更胜一筹。我们的框架使细胞图像数据生成多样化,并系统地解决了细胞分割技术中的评估难题,为推进细胞图像分析的研究和应用奠定了坚实的基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A generative benchmark for evaluating the performance of fluorescent cell image segmentation

Fluorescent cell imaging technology is fundamental in life science research, offering a rich source of image data crucial for understanding cell spatial positioning, differentiation, and decision-making mechanisms. As the volume of this data expands, precise image analysis becomes increasingly critical. Cell segmentation, a key analysis step, significantly influences quantitative analysis outcomes. However, selecting the most effective segmentation method is challenging, hindered by existing evaluation methods' inaccuracies, lack of graded evaluation, and narrow assessment scope. Addressing this, we developed a novel framework with two modules: StyleGAN2-based contour generation and Pix2PixHD-based image rendering, producing diverse, graded-density cell images. Using this dataset, we evaluated three leading cell segmentation methods: DeepCell, CellProfiler, and CellPose. Our comprehensive comparison revealed CellProfiler's superior accuracy in segmenting cytoplasm and nuclei. Our framework diversifies cell image data generation and systematically addresses evaluation challenges in cell segmentation technologies, establishing a solid foundation for advancing research and applications in cell image analysis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Synthetic and Systems Biotechnology
Synthetic and Systems Biotechnology BIOTECHNOLOGY & APPLIED MICROBIOLOGY-
CiteScore
6.90
自引率
12.50%
发文量
90
审稿时长
67 days
期刊介绍: Synthetic and Systems Biotechnology aims to promote the communication of original research in synthetic and systems biology, with strong emphasis on applications towards biotechnology. This journal is a quarterly peer-reviewed journal led by Editor-in-Chief Lixin Zhang. The journal publishes high-quality research; focusing on integrative approaches to enable the understanding and design of biological systems, and research to develop the application of systems and synthetic biology to natural systems. This journal will publish Articles, Short notes, Methods, Mini Reviews, Commentary and Conference reviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信